
-- - , " l l l l l ~

urlu ~CesSOnes for use with fnnn-

a'-

From I N O V b ~ ,
w-4,si,,rn
&, lcm 75231 I.214J104nl

Welcome to Pro Pak 1:The Best of CanDo
This collection of CanDo decks, utilities, and other resources was designed to serve
a number of purposes for CanDo users.

The decks were designed to show the many different things that can be done with
CanDo. Each of the decks is documented to show how the executable version
works, as well as insights on how they were created.

The KeyInput object, the Layout editor tool and the Cross-Referencer were
designed and included in this package to increase the power and facility of CanDo.
The Layout tool and, especially, the KeyInput Object should be of interest and
great use to all CanDo users, while the cross-referencer is aimed at slightly more
advanced users.

The IFF resources were made freely redistributable in the hope that you, the CanDo
user, will find them useful when creating your own decks. In fact, that is the aim of
everything in this package. Enjoy!

Pro Pak 1 Legalities
All software programs provided herein are entirely copyright 1990 by INOVAtronics, Inc. 8499
Greenville Avenue, Suite 209B, Dallas, Texas 75231 with the following exceptions:

1.The CanDo decks entitled "Solitaire," and "CodeBusterU are copyright 1990 by Mario Joel Guerra.

2,"KeyInput XtraTool Object," a CanDo Xtra Tool, is freely re-distributable, and is included here for
the benefit of CanDo users.

All rights reserved. The programs and documentation are sold "AS IS" and without warranties as to
performance, merchantability, or fitness for a particular purpose. Sale of this software conveys a license
for its use on up to two computers owned or operated only by the purchaser. Copying this software or
documentation by any means whatsoever for any other purpose is strictly prohibited.

All IFF resources included in this package (the sounds, animations, and pictures used in the decks
included in this package) are al l freely re-distributable.

While the CanDo decks included here are copyrighted and non-redistribulable, Pro Pak 1 owners may
modify them for their own use without limit.

Trademarks:

"INOVAtronics", "CanDo", "Power Steering fo r the Amiga", and "Pro Pak 1" are trademarks of
Inovatronics, I n c

"Amiga" and "Workbench" are registered trademarks of Commodore-Amiga, Inc.

"Deluxe Paint In" is is a trademark of Electronic A r t s

Pro Pak 1
Table of Contents

The Midway:
Shootin Gallery
plenty-8-~argets, so blast away 2
Solitaire
Playing with a full "deck"

CanDoMan
'Man vs. 'Bots in a multi-level maze 8

CodeBuster
Be a "mastermind" in no time

The PaintBox 18

Layout Editor Tool 2 6

KeyInput XtraTool Object 29

Cross-Referencer 32

" ShootingGallery If
How To Play ShootingGallerv

Step right up, everyone's a winner in the CanDo ShootingGallery! Step right up!
Release your aggressive, hostile, or even downright violent feelings by blasting ducks,
bears, and spinning lolly-pops, as well as six annoying targets.

Shoot as long as you like; don't worry we'll make more. In fact, this game goes on and
on. You can run out of ammo however, so be prepared to ante up by buying some
more shots from the vending machine.

As in any shooting gallery, the greater accuracy yields greater rewards, so hit the target
in the bullseye when you can.

T o quit, just select "Quit" from the menu or press the quit button in the upper-left
corner of the window. Have fun!

ShootingGallery is a single Card Deck.

A s with other games designed with CanDo, the colors on the display are used
extensively to determine on what the player has clicked. Within the context of its
display area, each BrushAnim has a small set of possible colors which constitute a hit.
In the case of the ducks, the rabbits, and the spinner, two colors, 8 and 9 are shared by
the targets. Processing is simple; all clicks on colors that are not any of the target's
colors are not a hit.

The most complicated aspect of ShootingGallery is the design of the BrushAnims it
uses. The animations used in this Deck were carefully designed to allow PingPong
animation to handle as much of the movement and decision making process as
possible.

The ducks move in a continuous stream from left-to-right. Once they are started in the
scr ipt , they run without intervention. A single AreaButton surrounding them
("DuckArea") handles all mouse clicks in their display area.

The rabbits and the spinner both use a simple AtDestination script to detect when the
BrushAnim has reached the point at which it must be turned. The spinner was also
designed in PingPong mode with DeluxePaint 111, so that the up and down motion of
the animation is entirely processed by CanDo by application of the PINGPONG flag
after the animation was loaded. This reduces greatly the work required to keep these
animations running.

The target BrushAnims also work in PINGPONG mode. That keeps them moving up
and down continuously. They are comprised of three different colors. allowing a
higher score to be awarded for hitting closer to the center of the target.

Each target BrushAnim also has a Reoccurring Timer associated with it. The purpose
of these timers is to vary the pattern of the targets as they move up and down on the
display. Each Timer is set for a slightly different rate, and each checks to see if its
BrushAnim is currently visible or not. If it is not visible and it is in motion, it is
deactivated until its next timer event. Without these timers, the target BrushAnims
would all move up and down together, resulting in a very dull display; with them, the
targets change their patterns in an unpredictable way.

The Routines in ShootingGallery are as follows:

CheckForBearHit Each time one of the bear Buttons (1-4) are hit, this
Routine decides whether or not a bear was actually
hit (by examining the color the mouse pointer was
on) . If a bear w a s h i t , t h e bear s a y s " o w ! " ,
otherwise the "MissedShot" sound i s played.
Hitting a bear does not affect the score.

C h e c k F o r T a r g e t H i t

This one Routine handles hits in the rabbit, ducks
and the spinner areas. It accepts three arguments.
The first is the sound buffer name to play if a good
hit was made. The next argument is the number of
points to add to the player's score on a hit. The
third argument is the name of a handler for this
t a r g e t . F o r t h e r a b b i t , t h e h a n d l e r i s t h e
"TurnRabbi tAroundl ' Rout ine , w h i l e f o r the
spinner it is the "TurnSpinnerAround" Routine.
T h e ducks require n o handler , as they d o not
c h a n g e behavior w h e n h i t , s o no h a n d l e r is
specified. The Routine checks to be sure that a
HANDLER w a s passed to it before Doing the
HANDLER.

When one of the bullseye targets is hit, this
Routine checks to see which part of the target got
hit. The outer part of the target (color 10) is worth
10 points. The next section (color 12) is worth 25
points, while the bullseye itself (color 6) earns 100
points. If none of the parts of the target were hit,
the "MissedShot" sound gets played. By using this
Routine which determines by color whether or not
a target was hit, a rectangular AreaButton can
control an irregularly shaped target.

By pre-loading as many of the resources used by
this Deck as possible, each resource can be given a
shorter name, hence every file that is loaded here is
given a different buffer name. Additionally, the
B r u s h A n i m f l a g s t h a t m u s t be s e t f o r e a c h
animation are set here. If the BrushAnims were
not pre-loaded, there would be no opportunity for
setting these important f lags. Note the use of

3

D E C O M P R E S S E D m o d e ; t h i s a l l o w s t h e
BrushAnims t o run at the greatest speed possible.
Also, the use of PINGPONG mode with most of the
BrushAnims relieves the logic of the program from
the responsibility of dealing with the animations in
many circumstances.

This Routine is in charge of updating the SCORE
variable, as well as showing its current value. It can
a l so be programmed to change the score to 0 by
passing a value of -1 to it.

T u r n R a b b i t A r o u n d Whenever either of the rabbit animations reach the
edges of their movement areas, this Routine removes
the rabbit BrushAnim, and shows the animation
which will move the rabbit in the opposite direction.
This Routine will also be called if the rabbit is hit,
thus changing i ts direction. Note the use of the
RABBITGOINGRIGHT variable to keep track of
which way the rabbit is current moving, and thus
which animation is playing.

T u r n S p i n n e r A r o u n d The spinner is a simpler matter because only one
animation is involved. When the spinner reaches its
destination, or is hit by the player, the animation is
simply made to move in the opposite direction.

U p d a t e S h o t C o u n t Each t ime the player clicks in the window, the
number of shots he or she has remaining is reduced
by one. There are buttons on the display that will
"buy" more shots.

" Solitaire "

This is the game of Solitaire, implemented using Klondike rules. Use the mouse to
click on cards in order to move them around. The "Rule of 3" is used to get cards from
the deck at the top; click on the face-down card on the right to deal the next 3 cards
(top card shows on the left). Click on the left stack to pick up the card. There are
menu options to select 1 card per deal or 3 cards per deal. Three cards per deal is the
default.

The "Rule of Kings" is not implemented. This means you can place any card or stack
on top of any empty stack or face-down card, as well as on any legitimate face-up card.
By legitimate face-up card, we mean alternating-suit, next-lower-value cards, by
themselves or at the top of the picked-up stack, can be placed on any bottom card
showing on a stack in the row of seven stacks, and only same-suit next-higher-value
cards can be placed in the discard stacks on the left. Any Ace can be placed in any
open position to start.

To pick up a face-up card, just click on it. If it is a face-down card in a stack on the
row of seven stacks, clicking on it will turn it face-up.

To pick up a stack, click on the exposed part of the top part of the stack that you want.
For example, if you have a K-Q-J-10 that you want to move to an open spot, click on
the portion belonging to the King. The pointer will become the whole stack. Just
position the stack over the destination (anywhere over the destination stack should
work) and click to release. Note: Of course, if the bottom card of the destination stack
is not a different-color, next-higher-value card, the placement will not be allowed.

As with a real deck of cards, there are ways to cheat ... but that's between you and your
conscience.

To quit, use the menu option, or press Right-Arniga-Q.

The Solitaire game has two cards, routines to handle the drawing and analyzing of
cards, and several AreaButtons on the main screen, one for each of the seven stacks.
the four ace stacks, and the deck areas. As you will find with most of the CanDo
D e c k s in this p a c k a g e , Rout ines a r e used heav i ly to reduce the a m o u n t of
If-Else-EndIf processing that must be performed, as well as to make it easier to later
change the logic used in the Deck.

Each stack of playing cards is controlled internally by a CanDo Document. These
documents have several lines of text stored in them, one of each playing card on the
stack at any given time. These Documents are never displayed, however, because they
are not linked to either a Memo Document Object or a List Document Object. They
are used solely for the purpose of storing and manipulating the playing cards. Note
that CanDo programmers often use Documents to replicate the functioning of a "stack"
or an "array". These are data storage constructs found in other languages. CanDo has

5

no arrays or stack, but the logical cursor inside each Document can be positioned and
maneuvered to simulate these constructs.

Another Document, called "StkLevel", contains a count of the number of playing cards
in each of the seven stacks. The Pos i t ionOnLine command is used to move the
Document's internal cursor to the line number containing the number of playing cards
in a given stack. For example, in the Routine "Placecard", the variable Showlnn is set
to the number of cards in the current stack by the use of the following script lines:

WorkWithDocument "StkLevel"
PositionOnLine StackNumber
Let Showing = Integer(TheLine)

In this case, the variable StackNumber is the number (1-7) of the current stack of
playing cards being examined.

The Cards are:

G e n P i c C a r d

SolitaireCard

The Routines are:

A C r d

T h i s Card c rea tes a picture of the So l i t a i re
screen,for fast redraw of screen between games.
Afterwards, a Timerobject Event Script moves us
to the SolitaireCard card.

The main Card, it creates the playing card brushes
(through ClipBrush), and runs the game.

This Routine draws the playing card designated by
the current active stack to the given coordinates. If
there is not a card to display, it displays an empty
pile marker.

This Routine converts from single letter playing
card names, like "2" or "J", into the values 1-13
which will be used to reference a given playing
card.

Whenever one of the Acestacks or the CardDeck
is clicked on by the player, this Routine is given
t h e n a m e o f t h e D o c u m e n t w h i c h h a s t h e
information about what's in that stack. If you are
holding a card, it will place the card on the stack,
otherwise it will try to pick up a card, if one exists,
from the stack.

This Routine removes a single card off of a stack
of cards, clipping the image of the card so it can be
moved around, and draws the card which was
beneath it.

PlaceCard

Placestack

ZipCardFrame

Places a card onto a stack of cards, making sure that
it is within the rules place the card on the stack.

This does the same thing as PlaceCard, but it is used
when a stack of cards is being moved rather than just
one.

Each time one of the seven Cardstacks is clicked,
this Routine is invoked, and is passed the stack
number (1-7) as an argument (ARG1). It looks at the
MouseY to determine which playing card in that
stack the user clicked. If the MouseY is below any
possible card, the Routine just exits. Otherwise, if
the user currently has a card or group of cards picked
up, the appropriate Routine is called to put them
down, if it is legal to do so. If none of the above
rules apply, then if there are cards showing on that
stack, they get picked up by a ClipBrush command
and the pointer gets set to the clipped image, else if
the top card on the stack is face down, it gets turned
over.

This Routine is responsible for creating the card
imagery used in this game. It first draws the images
onto the screen, then clips them as brushes for later
use. The images it creates include the arrow pointer
and the images for the spade, club, heart, and
diamond cards.

Draws the frame of a card. This routine is used by
the routines which create the imagery needed by this
game. Once the imagery is created and clipped as
brushes, this routine is no longer needed.

I' CanDoMan "

If you were a happy, smiling Bot like CanDoMan, what would you do if you were
being ruthlessly pursued by BadDiskBots? Run away, that's right! That is one aspect
of what CanDoMan is all about. Along the way, you can also pick up Treasure, Keys
to open doors to other levels, and Magic giving you the strength to temporarily kill
your enemies.

To start CanDoMan, run it from the Workbench or from the CLI using DeckRunner or
DeckBrowser. Once it loads, the starting horn will blow and you're ready for a new
game. Select

"New Game"

from the menu and CanDoMan will appear in the maze followed by the evil Bots. As
each Bot enters the maze, it will announce itself - Brenda Bridgeboard, Sally Silicon,
Billy deBot, and Fred.

Use the arrow keys to move CanDoMan around the maze. Each red dot in your path is
a Treasure, while the Magic (diamond shaped) and the Key have higher values. Once
you have picked up some Magic, you can temporarily kill Bots for the next several
seconds. If you run into a Bot without this power, you are likely to lose a life, and you
only have four lives to lose.

The Key allows you to move through locked doors to other levels of the maze.
CanDoMan comes with four levels already, but you can easily make your own
additional levels.

At certain points in the maze, WormHoles (shaped like concentric squares) will move
you to a new random position on the screen. This is a great way to get away from a
pursuing Bot, but you never know where you'll end up. Level 1 has only a few
WormHoles, while Level 4 is essentially composed of them.

You can pause the game, end the game, start a new game, or quit CanDoMan, by
selecting the appropriate choice from the menu. Each menu selection also has a
right-Amiga key equivalent, so you can perform those actions from the keyboard also.

CanDoMan consists of one Card with a PictureWindow in it. The PictureWindow
displays an image called "BackGround.Ilbm" from the "CanDoManIimages" directory.
This picture is lo-res with a thick border along the edges and an information display
area at the top. Inside these bounds, each maze is displayed using the ShowBrush
command.

The mazes of CanDoMan were designed using DeluxePaint I11 from Electronic Arts.
Each maze is a low-res brush image and is a grid comprised of 19 squares horizontally

8

by 1 0 squares vertically. The brushes are stored in the "CanDoMan/imagesM directory
under the names "Level.1" through "Level.4". Every element of the game has a
distinct color combination. By examining these colors with the ColorOfPixel function,
the characteristics of each square can be determined. A worksheet showing all of the
game'elements is provided.

CanDoMan design is broken loosely into the following aspects:

Analysis of the nature of a given location in the maze
Resolution of conflicts between CanDoMan and the things in the maze
The timer that makes the Bots move and controls the duration of certain attributes
Handling of the arrow keys

At the heart of the game is the routine QueryLocat ion. This is used to determine
whether a particular square of the maze can be moved into, and, if so, if it is currently
occupied by another Bot or some other game element. Two variables, BLOCKED and
EMPTY, are set to YES or NO as appropriate by this routine.

QueryLocat ion accepts two arguments, an X and a Y location. It checks first to be
sure that the location is within the bounds of the 19 by 1 0 game area. If it is not, then
the location is assumed to be BLOCKED. If it is within bounds, the ColorOfPixel
function is used to get the color of the pixel in the center of the square. (A formula is
used to compute the location of the center of the square, accounting for the square X,Y
location and the width and height of the borders of the main game area.) The brushes
used for the various game elements are specifically designed to have a unique color at
their center pixel. In this way, QueryLocat ion can precisely identify which game
element is at any location by sampling its color.

If color 5 is in the square, then the location is BLOCKED, because 5 is the color used
for the green maze walls. If it is not color 5, then the square is not BLOCKED.
However, it might still have some other game element in it, so a comparison is made to
the empty square color (color 0). The EMPTY variable is then set to NO if any other
color is present.

The next routine to examine is QueryIn te rac t ion . This routine will decide what
action to take for each type of game element in a square when either CanDoMan or a
Bot tries to move into that square. The possible game elements, and their respective
colors, follow.

Empty 0
Wall 5
Magic 11
Door 18
B0t3 22
Bot2 28
CanDoMan 30

Treasure 2
Bot4 10
Botl 16
LockedDoor 19
WormHole 25
Door 29
Key 3 1

There is a Routine to handle each color. Each one is named Interaction with the color
number added to the end of the name, as in, Interaction-0 or Interaction-10.

When a Bot is being moved, QueryInteraction is called with the new X and Y
locations passed as arguments. When CanDoMan is moving, a third parameter is also
passed which is a Boolean TRUE. This tells QueryInteraction that CanDoMan is
moving,, and not a Bot. This fact is used by each of the Interaction Routines in order
to determine whether a move is legal or not, or has special consequences, based on the
identity of the moving piece. In other words, if a Bot runs into another Bot, a certain
sound is played, whereas if CanDoMan runs into'a Bot, he might kill the Bot or get
killed by the Bot.

Each Interaction Routine has the option of declaring a HANDLER Routine for this
type of interaction. When CanDoMan moves into a square occupied by treasure, the
Routine PlayerVsTreasure is declared to be the HANDLER to resolve this conflict.
The HANDLERS that exist are:

BotVsBot
BotVsKey
BotVsPlayer
BotVsWormHole
PlayerVsDoor
PlayerVsLockedDoor
Play erVsTreasure

BotVsDoor
BotVsLockedDoor
BotVsTreasure
PlayerVsBot
PlayerVsKey
PlayerVsPlayer
PlayerVsWormHole

Note that the HANDLER is not invoked by QueryInteraction, nor by its Interaction
Routine. The HANDLER is called by the Routines that make the Bots move at regular
intervals, and by the Routines handling the keyboard input which moves CanDoMan.

For each Bot, there is a set of Routines for dealing with various aspects of their render
and movement. The following is an explanation of the Routines that apply to Botl.
They also apply to each of the other Bots, with the appropriate substitution of name
and number.

Startup-Botl

Place-Botl

This Routine is called to start Botl in the
maze. When the game is over, or before it
starts, the variable LEVEL is set to 0, so
this Routine checks to see whether or not
the Bot should be started at all. If it is
started, the Bot is placed on the display via
the PlaceBot Routine. Then the variable
B O T 1 - R E V I V E i s s e t to F A L S E ,
indicating that the Bot does not need to be
revived, because it is already in the maze.

When CanDoMan moves from one level of
the maze to another, each Bot is shutdown
to stop it from moving. This also happens
when the game is stopped.

This Routine finds an acceptable location
to place Botl in the maze. It runs in a
loop, looking for an empty spot, or a spot
which contains treasure. (A Bot can move

Move-Botl

Kill-Botl

Erase-Botl

into a square with treasure and move out
of it again, leaving the treasure behind.)
W h e n a g o o d s p o t i s f o u n d , t h e
Show-Botl Routine is called to update
the display.

A single Reoccurring Interval Timer
ticks 1 2 times per second. This timer
makes the Bots move. This Routine is
called each time the timer's occurred
sc r ip t happens . If the Bot is d e a d ,
nothing will happen. If the Bot should
be revived. (it has been temporari ly
killed by CanDoMan) it will be revived
and placed in the maze via Place-Botl.
The next test determines if the Bot will
randomly not move at all. Finally, if
none of these other conditions apply, the
Bot will be moved either vertically or
horizontally (decided randomly) if and
only if it can move to its new location
l e g a l l y . T h e a c t u a l m o v e m e n t is
accomplished by the FinishMove-Botl
Routine.

This Routine moves the Bot to its new
location. If the square the Bot is moving
into is empty, the old square is cleared,
the new coordinates saved, and the Bot
shown in the new spot. If the square is
o c c u p i e d b y s o m e t h i n g , t h e
QueryInteract ion Routine is called to
determine which HANDLER must be
u s e d to r e s o l v e t h e c o n f l i c t . T h e
H A N D L E R is then ca l led , and it is
responsible for changing the display
appropriately.

Whenever B o t l is killed, this Routine
plays a sound, and scrolls the Bot into
t h e f l o o r o f the m a z e . I t s e t s t h e
BOT1-REVIVE flag to T R U E s o the
Bot can come back later. If the Bot was
carrying the Key, the Key is "dropped"
by resetting the BOTI-KEY flag and
showing the key to be where the Bot
was.

When the Bot was originally placed in
the square from which it is being erased,
anything else that was in the square was

11

Show-Botl

KeyFlag-Botl

c l ipped in to a Brush B u f f e r ca l l ed
PdClip. When the Bot is erased, the clip
is shown to replace what the Bot was
covering. The clip can be empty, so if it is,
the squa re is c leared wi th a s imple
AreaRectangle command.

To place Botl visually on the display, the
current contents of the square into which
Botl is moving are clipped into the Brush
Buffer EWChp. Then the image of the
Bot can be safely stamped into the square
with a ShowBrush command.

This Routine handles the special case when
Botl has picked up the Key. A TRUE or
FALSE status is passed as an argument and
the BOT1-KEY Routine is set accordingly
to this value. The Key is a special case
because it the only type of treasure which a
Bot or CanDoMan can pick up and move
to another spot.

There is a similar set of Routines that handles CanDoMan. They are:

P lace -P laye r

Move-Player

Kill-Player

Erase-Player

This Routine will randomly place
CanDoMan in the maze using similar logic
to that used to place the Bots.

The four arrow keys are each monitored by
an AKey Object. When they are pressed,
the AKey Objects call this Routine and
pass to it offset from the current location of
CanDoMan, which reflect what direction
and how far CanDoMan is to move. The X
offset is given first, followed by the Y
o f f se t , becoming A R G l and ARG2
respectively. These offsets are added to
the current coordinates of CanDoMan.
Q u e r y I n t e r a c t i o n is called to get a
HANDLER for the destination square, and
the HANDLER is invoked.

This Routine operates just like the Bot Kill
Routines, with the additional check to see
if the player has run out of lives, and if so,
a sound is played and the E n d G a m e
Routine is called to stop game play.

This is essentially the same Routine as
used by the Bots.

Show-Player See above.

See above.

And finally, there are routines just to handle the flow of the game:

E n d G a m e

NewGame

PauseGame

ResetLevel

ResetLives

ShowKey

ShowLevel

This Routine loads all the player and bot
images, sets up the first level, sets the
score to 0, and initializes CanDoMan's
lives.

S h u t s d o w n a l l B o t s , t u r n s
GAMEINPROGREESS variable to NO,
and deactivates the Timer Routine.

Updates the color of the magic wand
based on the MAGICCOUNT variable.

Ends the current game, sets up the
sounds to play and redisplays level 1,
then starts up the bots and places the
player on the display.

Moves game to the next level and
changes the speed of the timer events.

The Routine which is called on each
Timer event when the game is in play. It
increments the COUNTER and when it
reaches MAXCOUNT it moves the Bots.

The Routine which is called on each
Timer event when the game is not in
play.

Switches between Paused and UnPaused
without changing the score and players
status.

Sets up variables to indicate the first
Level of play.

Gives the user a full LIVES count, and
redisplays this count.

Place the image of the Key on the
display.

Displays which level you are currently
on.

13

ShowLevelImage

ShowLives

ShowScore

If we have switched levels, display the new
level imagery.

Update Lives count if it is changed, and
redisplay that count on the screen.

Update the score count and then redisplay
it on the screen.

CodeBuster is a game of logic. The computer has a code of four colors. Your mission
is to determine what that code is.

There are six colors available. The computer selected four times from among these six
colors. You can enter a guess as to what four colors the computer has by clicking on a
color, then clicking on one or more of the four balls in the recessed area near the top of
the screen. This will put the color you have chosen on each ball you select. When you
have set any or all of the colors, select the Compare button. The computer will then
tell you how many colors are in the right position (the number will be displayed in
white) and how many colors that are correct, but NOT in the right position (displayed
in black).

For example:
The computer has chosen red, green, blue, red.

Your choices: Computer responds:

red, blue, green, yellow 1 2
blue, green, yellow, orange 1 1
green, red, red, blue 0 4
red, green, blue, red 4 (Got it!)

You can click on almost anything on the screen to select a color, except for the four
balls where you are supposed to be entering colors (the balls in the recessed area). This
means that you can select colors from the balls that scroll below the top row of balls.
The mouse pointer will change to the color you select. Try it; you'll see what we
mean. If you don't enter a new color in a position, when you select Compare the
previous color will be used for your guess. Initially, these colors are red, blue, green,
and yellow, respectively, and are displayed as an initial guess for your convenience.

If you want to see the answer, press the Right-Amiga-S combination. For a new game,
press Right-Amiga-N. To turn the color-change feature onloff, press Right-Arniga-C.
A brief help screen will be displayed if you press Right-Amiga-H. To quit, press
Right-Arniga-Q. These options can also be selected from a menu.

How CodeBuster Work

CodeBuster only has one Card. The background color is filled into the Window in the
Afterstartup Script by extensive color manipulation. This is also where the colors for
the four buttons is decided, and they are stored in the variables named COLOR1
through COLOR4. Only color numbers 3 through 8 are used for the 6 colors from
which the computer picks its secret code. There are a number of Buttons on the Card.
They are:

ColorButton This is a big Button which covers the entire window.
Anytime the user clicks anywhere in the window, the

15

OnClick script of this Button will sample the color of
the window underneath the mouse pointer at that time. If
the color is less than MINCOLOR (3) or greater than
MAXCOLOR (8), then it is not a valid color for one of
the balls, so the script does nothing in those cases. If the
color is within range, the color is saved in the variable
THISCOLOR, and the pointer colors, which are always
colors 17 through 19, are set to that color so that the
pointer is solidly that color.

BoxButton In order to prevent the user from being able to choose
colors from the recessed area, this Button is set on top of
the "ColorButton" and does nothing when hit.

Button1 - Button4 For each of the four balls in the recessed area, when they
are picked, if there has been a color selection so far, the
ball is redrawn in the new color, and the value of the
THISCOLOR variable are stored in the appropriate
MYCOLOR variable. The first ball's color is stored in
the variable MYCOLOR1, the second ball's color in
MYCOLOR2, and so on.

Compare When the user is ready to compare his or her guess to the
actual secret colors of the balls, this Button's OnRelease
script gets activated. The script follows these steps:

1) The four secret colors are typed into a Document called "CColors", one per
line. Those colors are stored in the variables called COLOR1 through COLOR4.

2) The colors from the four balls in the recessed area are typed into a Document
called "MyColors", one per line. Those colors were stored in the MYCOLOR set
of variables. These are the user's guessed colors.

3) The colors in each Document are compared, one at a time. When two colors
match, that means that the player has correctly guessed the color of one of the
balls. The variable CORRECTCP is increased by one, and the matching lines are
replaced in both Documents with a value of 0, so that when a check is made for
the right color in the wrong slot later on, these colors will not be considered again.
Remember, only colors 3 through 8 are valid colors for the balls.

4) If all four of the user's guesses were correct (CORRECTCP=4), then the
Routine GotItRight! is called and does not return.

5) The Document containing the user's guessed colors is searched, line by line,
for each of the remaining true colors. If they are found, that means that the user
has the correct color for a ball, but in the wrong position. The variable
CORRECTCOLOR is used to count the number of times this condition is
discovered.

6) The inside of the recessed area is clipped into a Brush Buffer called
"ClippedBrush". Next, a rectangular area immediately below the recessed area is

16

scrolled down, 2 pixels at a time, for a total of 12 pixels. In this way previous
guesses a r e m o v e d down the screen. Then the mos t recent g u e s s inside
"ClippedBrush" is stamped onto the display with a ShowBmsh command.

7) Finally, the number of correct colors/positions, and correct colors/incorrect
positions, are printed into the window next to the most recent guess.

NewGame This Button is simplicity itself. It s imply performs a
Firstcard command, effectively restarting the Deck.

The CodeBuster Deck also has a few Routines:

Ellipse Each time a ball is drawn anywhere in the window, this
Routine draws the ball, puts the little white area on it to
make it look shiny, and draws the shadow area underneath
it to complete the illusion of a light source shining down on
the ball from the upper left.

GotItRight! When the user finally wins, the "Compare" Button gets
disabled, and the various text messages are printed to the
screen indicating the level of achievement of the user. The
variable TRIES is used to keep track of the total number of
guesses that the user has made. If TRIES is less than 10,
the colors are also cycled briefly for a little additional flair.

Print This little Routine is called by the ShowInfo Routine when
it is explaining the rules. The text to print is printed and a
variable is used to keep track of the position at which to
print next.

Showcurrent This Routine draws the four balls in the recessed area. It is
called from the Afterstartup script of the Card in order to
show the starting colors, and is called whenever the user
gives up via the "Show Answer" TextMenu item. In that
case, the MYCOLOR set of variables is modified to be
equal to the COLOR set of variables s o that the colors
shown are the correct ones.

ShowInfo The instructions for CodeBuster are printed via this
Routine.

"The PaintBox"
w To 1 Jse

The PaintBox Deck is a small paint program made using CanDo. A paint program is
one which anybody can use to draw pictures, or touch up pictures that others have
drawn. On the Arniga, paint programs are very popular because of the vast number of
colors and flexible resolution it offers, and because of the simplicity of drawing with a
mouse.

You can run PaintBox from the Workbench or the CLI, however if you run it from the
CLI you must be logged into the same directory as the PaintBox Deck. After PaintBox
starts, you will have a blank screen onto which you can paint. Every option of the
PaintBox is controlled through pull-down menus, the mouse, and the keyboard.

Try clicking the left mouse button on the PaintBox screen, and drag the mouse and
then release the left button. You have just drawn a dotted line! You can change the
type of thing you are drawing through the "Tool" menu. If you select this menu, you
will see the following choices:

Dotty
Doodle
Line
Flood Fill
Open Rectangle
Solid Rectangle
Open Circle
Solid Circle
Open Ellipse
Solid Ellipse

By choosing one of these menuitems, you will immediately change the type of drawing
that you are doing.

To change drawing color, press the "P" key. This will cause a palette of colors to open
at the top of the screen. You can select one of these colors by simply clicking on it.
To do so will immediately change which color you are drawing with. Don't worry
about the fact that the palette is on the screen, in your drawing area: anytime you start
to draw it will disappear and will reappear whenever you release the left mouse button.
To make the palette go away, press the "P" key again.

Under the "Clip" menu, you will find commands that allow you to load and save
brushes, and to clip brushes from the display. A brush in PaintBox is a part of any
image with which you can draw onto the screen instead of using the thin line with
which you normally draw. PaintBox will be able to use any brushes made with other
Amiga paint programs, such as DPaint 111. The "Clip" menu offers the following
commands:

(cont. next page)

Open ...
Save
Save as...
Grab A Clip
Use Clip

Open ... will bring up the built-in CanDo file requester, allowing you to select a brush
with which to paint. After selecting a brush, the Use Clip command will allow you to
draw with it.

Save will save the current clip brush using the same name as the most recent Save or
Open ... command used. If no clip filename has yet been used, the CanDo file
requester will appear. The brush will be saved as a standard, DPaint compatible brush
file.

Save as... lets you specify a new name for the clip via the file requester, and will then
save the clip brush under that name.

Grab A Clip allows you to specify a section of the screen to use as a clip brush for
drawing. After selecting this option, click and drag in the screen with the mouse. This
action will select the clip area. When you release the mouse button, the clip will be
stored internally.

Use Clip will let you draw with the currently loaded, or last clipped, clip brush. This
type of drawing is very similar to that used by other Amiga paint programs. As you
click and drag the mouse, the clip brush will be drawn onto the screen.

Finally, under the "Project" menu, you will find the following options:

Refresh Screen
Clear Screen
Open ...
Save
Save as...
Quit

Refresh Screen will redraw the original picture that was loaded from disk. In the
event that the picture is no longer in memory, PaintBox will try to re-load it. If it
cannot be re-loaded, PaintBox will give an error message. This is not an undo feature;
it simply redraws the original screen.

Clear Screen will erase everything you have drawn into the display area. Be careful,
there is no undo for this command.

Open ... allows you to load in a picture file of the type that DPaint or another Arniga
paint package might create. This picture will then be displayed in the drawing area.
You can load pictures and touch them up using PaintBox in this way.

Save will save the current display as a standard Amiga picture file (ILBM in IFF
terms) to the filename used last by the Open ... or the Save, or Save as... commands. If

19

a name has not yet been specified, the file requester will open, allowing you to pick a
filename.

Save as... will open the CanDo file requester to let you pick a name to which to save
the current display, and will then perform the save function after you have picked a
filename.

That's it; a simple paint program, created with CanDo. Let's see how it does what it
does.

Basically, the PaintBox Deck uses a Picture Window, completely covered by a big
Area Button. The OnClick, OnDrag, and OnRelease scripts for the Area Button
accomplish all of the drawing functions through the use of indirection. Indirection is a
method of programming whereby the contents of a variable completely or partially
contains the name of some other part of the program. For example, suppose you want
to Do one of two possible Routines, based on a variable X, which can be either 1 or 2.
In CanDo, you might do it like this:

If X=l
Do "XI"

Else
Do "X2"

EndIf

which would work fine. However, a shorter and simpler way of accomplishing this
same goal is shown in the following example.

In this case, if X equals 1, the Routine name to Do will be evaluated to be "XI", and if
X equals 2, the name will be evaluated to be "X2". This is indirection at work, and it is
used extensively in the Decks on the ProPack 1 diskette. In the case of the PaintBox,
indirection is used to allow the scripts for the one Area Button to perform several
drawing functions. Each time a new drawing tool is selected from the "Tools" menu,
several variables are set to values associated with that tool. When the Area Button is
accessed by the user, these variables are used to figure out which Routines to call to
perform the functions.

The PaintBox Deck consists of two Cards:

BlankImage This first Card opens an extra-halfbrite screen, sets up its
palette, clips the screen into a Picture Buffer using the
Clippicture command, and then goes to the next Card. By
using this method, the "RealPainter" Card can be set up as a
Picture Window without having to have a real picture on the
disk.

Realpainter All of the interactive parts of the program happen on this Card.
Basically, there is one, very large Area Button (640 by 400)

20

which covers the screen. Anytime the user clicks on this
Button, the appropriate Routines are called to perform the
type of drawing required by the current drawing tool.

The "Realpainter" Card contains the main Area Button for the drawing area, the Area
Buttoil on which the palette selector resides, as well as all of the TextMenu Objects
which are used to control the program. A single AKey Object is also defined on this
Card to allow the user to "open" and "close" the palette selector. (All that really
happens is that the palette Area Button is movsd so that it is in or out of the visible
area.)
The only Object here of any real complication is the Area Button which encompasszs
the drawing area. Here is the complete definition of this Object:

AreaButton "DrawArea"
Definition

Origin 0,O
Size 640,400
Border NONE
Highlight NONE

EndDefinition
OnClick

Do "HideColorBox"
Do PLACEMARK
IfError
EndIf

EndScript
OnRelease

Do LIFTMARK
IfError
EndIf
Do "RefreshColorBox"

EndScript
OnDrag

Do USEMARK
IfError
EndIf

EndScript
EndObj ect

In each script of the Object, indirection is used to activate the appropriate Routine for
the currently selected tool. When the mouse is clicked on the Area Button, the
PLACEMARK script is called to start drawing (think of this as setting a pen down on
paper.) When the mouse is dragged, the USEMARK script is called to actually draw
on the screen and keep up with the mouse (moving the pen.) Finally, when the mouse
button is released, the LIFTMARK script is invoked to complete the drawing activity
(lift the pen off the paper.)

Each TextMenu Object in the "Tools" menu provides the Routines to accomplish one
drawing function, and sets the PLACEMARK, USEMARK and L I F T M A R K
variables to values appropriate for that function. They do this by calling either the
"UsePen" or the "UseTool" Routine, passing to it the name of the drawing function as

21

ARG1. "UsePen" is called for drawing functions which behave like real pens, i.e., you
put them on paper , d rag them around, and wherever the pen touches the paper,
something is permanently drawn. The "UseTool" routine is called for each drawing
functions that must "rubber-band" around the display. For example, the rectangle tools
will follow the mouse around until the user lets up on the mouse button. Only then will
the display be permanent ly al tered. "UseTool" u s e s a se t of three Routines,
"PlaceTool", "DragTool" and "LiftTool" to accomplish the rubber-band effect.

Not all tools require Routines for all three functions. That is why the IfError ... EndIf
c o m m a n d s a r e used a f t e r the ca l l s to the PLACEMARK, USEMARK and
LIFIMARK Routines. If the particular Routine does not exist, the Do command will
generate an error. By using IfError these errors will be ignored when the occur.

Notice that in the OnClick script the "HideColorBox" Routine is called, and that in the
OnRelease script "RefreshColorBox" is called. If the palette requester is in the visible
display area, these two calls will move it out of the way while the user is drawing, and
will move it back when the user stops drawing.

These are the Routines used in the PaintBox Deck:

Doodle The PLACEMARK Routine for the Doodle tool.

Doodle.Drag The USEMARK Routine for the Doodle tool.

Dotty The PLACEMARK Routine for the Dotty tool.

Dotty.Drag The USEMARK Routine for the Dotty tool.

DragTool When a rubber-banding tool is in effect and the mouse is
dragged, this Routine is called. It draws the image in
COMPLEMENT mode, effectively erasing the old image,
rescales it according to the new mouse position, and then
draws it again.

FloodFill The only Routine required by the FloodFill tool, this is its
PLACEMARK Routine.

Grabclip The GrabClip function uses the OpenRectangle tool's
Routines to show the sizing of the clip area.

GrabClip.Release When the user lets up on the mouse button after sizing the
clip area, this Routine figures out how big the clip is and
uses the ClipBrush command to save it in a Brush Buffer
named "Theclip."

HideColorBox The palette selector, o r color box, is moved out of the
visible display area with the Moveobject command, and
what was previously in its place is restored. This happens
only if the color box is currently being shown, and the user
has started to draw on the screen. When the user lets up on
the mouse button. the "RefreshColorBox" Routine is used

to restore the palette selector on the display.

L ine

O p e n c i r c l e

OpenEll ipse

OpenRectangle

PlaceTool

The palette selector is really a brush that is loaded off
disk. A different brush is required for every possible
number of colors that might occur on a screen, i.e., 2, 4,
8, 16, 32, 64, or 4096 colors. Each time a new picture is
selected, o r the "Refresh Screen" o r "Clear Screen"
commands are used, this Routine is used to make sure
that the proper color box brush is loaded into memory.

When a rubber-banding tool is in effect and the mouse is
released, this Routine is called. It draws the image in
N O R M A L mode, making it a permanent part of the
display.

This is the T O O L Routine for drawing lines. This tool
uses rubber-banding.

This is the T O O L Routine for drawing open circles.
This tool uses rubber-banding.

This is the T O O L Routine for drawing open ellipses.
This tool uses rubber-banding.

This is the T O O L Routine for drawing open rectangles.
This tool uses rubber-banding.

When a rubber-banding tool is in effect and the mouse is
released, this Routine is called. It calculates the current
mouse position and the initial size of the image to draw,
and draws the image once in COMPLEMENT mode.
T h i s s e t s u p t h e n e c e s s a r y e n v i r o n m e n t f o r the
"DragTool" Routine to function.

RefreshColorBox Whenever the color selector is moved into the visible
display, the area which will be underneath the color box
is clipped into a Brush Buffer called "Boxclip", so that it
can be restored whenever the color box is removed.

R e m o v e C o l o r B o x T h i s Rout ine goes th rough the s a m e s teps a s the
"HideColorBox" Routine, with the additional s tep of
setting the C O L O R B O X S H O W N variable to false.
This prevents the palette selector from being shown in
the future, until the user deliberately opens it again. This
is the Routine that is used to shut down the color box
when i t is already open and the user presses the "P" key.

R e p o r t E r r o r If errors are encountered while performing various
functions, PaintBox will call this Routine, giving it a
string to echo out to the CLI. If PaintBox was not run
from a CLI. this string will not be seen.

'-3

This brings up the file requester and gets a name under
which to save the current clip. If it gets a valid filename,
it will save the clip and store the filename in the variable
CLIPNAME. This checks first to make sure that a clip
exists, and will do nothing if no clip has been created or
loaded.

SaveAsPicture This brings up the file requester and gets a name under
which to save the current display. If it gets a valid
filename, it then saves the picture and stores the filename
in the variable PICNAME.

Saveclip This Routine saves the current clip, if there is one, using
the filename stored in the CLIPNAME variable.

Savepicture This Routine saves the current display using the filename
stored in the PICNAME variable.

SelectColor Whenever the user clicks on the palette selector, this
Routine checks to see if a new color has been chosen,
using the ColorOfPixel function. If a new color has
been selected, it changes PenA to be that color, and then
calls "UpdateColorBoxColor" to adjust the currently
selected color display at the far left side of the color box.

ShowColorBox When the user presses the "P" key, and the color box is
not currently being shown, this Routine is called. It sets
the COLORBOXSHOWN variable to true and then
calls the "RefreshColorBox" Routine to force the palette
selector into the visible area.

Solidcircle This is the TOOL Routine for drawing solid circles
This tool uses rubber-banding.

SolidEllipse This is the TOOL Routine for drawing solid ellipses.
This tool uses rubber-banding.

SolidRectangle This is the TOOL Routine for drawing solid rectangles.
This tool uses rubber-banding.

UpdateColorBoxColor Each time the palette selector is placed on the display, or
a new color is chosen by the user, this Routine draws a
rectangle into the color box at the far left side, showing
which color is the current drawing color.

UpdateMove This updates the mouse position variables, and rescales
the size of the rubber-band area. In this way, the tools
requiring a rubber-band effect, can keep up with the
mouse as it is dragged.

The PLACEMARK Routine for the Clip tool.

The USEMARK Routine for the Clip tool.

UseClipPen When "Use Clip" is chosen from the "Clip" menu, this
Routine checks to see if there is a clip, and if there is not,
it sets up the use of the Dotty tool instead.

UsePen This is the setup Routine fo r all tools which do not
require a rubber-band effect.

UsePointer Each tool has a unique pointer to remind the user which
paint funct ion is being used. T h i s Routine sets the
pointer to the required image. If the pointer brush cannot
be found, the error will be ignored.

UseTool This is the setup Routine for all tools which do require a
rubber-band effect.

How T o Add New DrawiwJh&hm

Suppose that we wanted to add a new drawing tool to PaintBox, e.g., an Open Square
tool. We would proceed like this:

1. Add a menuitem for "Open Square" to the "Tools" menu by duplicating the
"Open Rectangle" Menu Object. Change its Occurred script to read:

Do " UseTool " ," Opensquare"

2. Duplicate the "OpenRectangle" Routine, and change it to read:

so that the height of the rectangle that is drawn is the same as the width.

3. Finally, create a new brush for the Open Square tool, o r just copy the Open
Rectangle pointer file. Remember, you can use the PaintBox itself to create
the file for this new pointer image!

Layout EditorTool

With the Layout EditorTool, you can integrate text into your CanDo displays more
easily than ever before. This tool allows you to flow text, which you can load from a
file or type in yourself, around imagery or other display elements. You simply use the
mouse to guide the boundaries of the text layout area, and the script to exactly
reproduce your layout will be written for you. You may also specify the font and style
in which you want the text rendered.

To install the Layout EditorTool, just move the entire directory named Layout into
your EditorTools directory used by CanDo. If you are working with the original
CanDo distribution floppies, there may not be enough room for the directory on the
CanDoExtras disk. One solution might be to move the entire EditorTools directory to
RAM, but wherever you put it, be sure to update the EditorTools ToolType in the
CanDo icon or the cando.defaults file in the "s" directory on the CanDo disk.

To move the entire Layout directory using Workbench, drag the Layout icon onto the
EditorTools icon. The copy will be performed and will take only a few moments.
From CLI just type

"copy Layout [wherever]:EditorTools all"

and the copy will be performed.

Layout is an EditorTool; you use it while in CanDo's script editor. After successful
installation, it will appear as an icon in the scrolling list of EditorTools at the far right
side of the script editor. You may have to scroll through the list using the slide bar to
find the Layout icon. It looks like this:

......-
Click once on the Layout icon to run it. After a few seconds, it will open a window on
CanDo's screen called "Layout Editor Tool", and will also draw a default shape on
your window. The shape is the text layout area. Whatever text you layout will be
flowed into this area.

The Layout EditorTool window has a text editor into which you can type text, or load a
text file. This tool has one menu called "Text" which has three menuitem choices:

Load ...
Save ...
Insert ...

Load ... will open the CanDo file requester and allow you to specify a text file to load
into the Layout editor. After loading the text, you may type changes into it. Layout

26

uses the text that is in the editor when it flows the text onto your display. It does not
read the text from the file ever again.

Save ... lets you s a v e whatever text is in the Layout editor to a text file of your
choosing.

Insert ... will add the contents of whatever text file you specify to the text that is
currently in the Layout editor.

Type some text into the Layout editor, or load a small text file. At any time, you can
see what the text will look like once it has been flowed by pressing the button labeled
"Preview the text" at the right side of the display. When you press this button, a
requester will open which tells you how to stop previewing the text and return to the
Layout EditorTool control window. Pay careful attention to this information. To
return to the Layout control window you will press the Escape key once. After you
press the OK button on this requester, Layout will start to calculate the best way to
flow your text. It will use an hour-glass pointer to show you how it is progressing.
After a few seconds, your text will appear in the flow area on your window.

T o adjust the f low area, choose one of the three buttons at the top of the Layout
window. These buttons are labeled:

Left
TOP
Right

By using these three options, you can modify the boundaries of the flow area, directly
on your display. After choosing one of the buttons, the Layout control window will
move out of your way and the pointer will turn into an arrow showing you which side
of the f low boundaries that you are editing. You can switch between the three
directions by using the arrow keys on your keyboard. By pressing the up arrow, for
example, will change your pointer to an up arrow and you will then be in the proper
mode to modify the top boundary of the text flow area. To return to the Layout control
window you will press the Escape key once.

Left allows you to change the left-hand boundary of the text flow area. Notice that the
left and right boundaries are made up of vertical slashes. By clicking on the display
and dragging your mouse while in left arrow mode, you will move the individual
slashes on the left-hand side of the flow area. You may have to drag the mouse slowly
to move each and every slash to the correct position.

Top allows you to set the top boundary for the text flow area. Just click in your
window and drag the mouse. A horizontal line will appear that represents the top
boundary. Release the mouse button when you have the boundary at the proper spot.

Right lets you set the right-hand boundary of the text flow area in the same manner as
Left.

Remember to press the Escape key to return to the Layout control window.

You can also control the font and text style of the flowed text by pressing the button
27

labeled "Set Font & Style". This will open the CanDo FontJText Requester from
which you can specify the font and point size to use, as well as the style, including
CanDo's special extended text styles.

After setting the font and style, Layout will recalculate the size of the flow area. This
will take only a few seconds.

When you have setup your flow area, and the text to go in it, just the way you want it
to be, press the "OK" button, and Layout will type all of the CanDo scripting
commands necessary to display your text within the flow area. If you have a large
amount of text, this can produce a very large script.

It is a good idea to save your text before pressing OK, if the contents of the Layout
editor are not already saved. The Layout EditorTool cannot work backwards from a
script to calculate what your text is or what the shape of the flow area is.

KeyInput Object XtraTool

The KeyInput Object is an Object which you may use in your CanDo applications for
the purpose of responding to keyboard activity.

Three types of events are associated with KeyInput Objects: Pressed, Repeated and
Released. A script written for the Pressed event will execute when the designated key
is pressed down. A script written for the Repeated event will execute regularly as the
designated key is held down. And a script written for the Released event will execute
when the designated key is finally released.

NOTE: The designated key may also involve command keys, such as SHIFT and
CONTROL, to be held down when the key is pressed, as will be explained below.

To install the KeyInput Object, just move the entire directory named KeyInput into
your XtraTools directory used by CanDo. If you are working with the original CanDo
distribution floppies, there may not be enough room for the directory on the
CanDoExtras disk. One solution might be to move the entire XtraTools directory to
RAM, or to the CanDo disk (you might have to delete some other files from the CanDo
disk to do so), but wherever you put it, be sure to update the XtraTools ToolType in the
CanDo icon or the cando.defaults file in the "s" directory on the CanDo disk.

To move the entire KeyInput directory using Workbench, drag the KeyInput icon onto
the XtraTools icon. The copy will be performed and will take only a few moments.
From CLI just type

"copy KeyInput [wherever]:XtraTools all"

and the copy will be performed.

From the main panel, press on the button marked "Xtra." A requester titled, "Extra
Objects/Tools System," will appear. Position on the KeyInput line and select the
"Perform" button. The "KeyInput Object System" requester will appear. Select the
"Add" button to create a KeyInput Object. If the KeyInput Object System was
properly installed, you will now see the "KeyInput Object Editor." If not, repeat the
installation procedures above and try to use the KeyInput Object again. If problems
persist, call the INOVAtronics CanDo Help Line at (214) 340-4992.

Three Fields in the "KeyInput Object Editor" must be filled out for each KeyInput
Object you create. The first Field, "Name," is the name of the KeyInput Object you are
creating and can be anything you wish.

The "Key Code" Field contains the code for the actual key which will trigger an event.
The following Key Codes are valid for this Field:

- .
F8
F9
F10
ACCENT
AMIGA
BACKSLASH
BACKSPACE

CAPSLOCK
CLOSEBRACK
COMMA
COMMODORE
CONTROL
DELETE
DOWN
ENTER
EQUAL
ESCAPE
HELP
HYPHEN
INTER1
INTER2
LEFT
LEFTALT
LEFTAMIGA
LEFTSHIFT
NUMO
NUMl
NUM2
NUM3
NUM4
NUMS
NUM6

NUM7
NUM8
NUM9
NUMASTERISK
N UMCLOSEPAR
NUMHYPHEN
NUMOPENPAR
NUMPERIOD
NUMPLUS
NUMSLASH
OPENBRACK
PERIOD
RETURN
RIGHT
RIGHTALT
RIGHTAMIGA
RIGHTSHIFT
SEMICOLON
SINGLEQUOTE
SLASH
SPACE
TAB
UP

The "Command Keys" Field contains the set of keys (up to three) which must also be
held down when the key specified in the "Key Code" Field is pressed. If more than
one Command Key is desired, each must be separated by a space. If you do not require
any Command Keys, then enter NONE into the "Command Keys" Field.

These five command keys can be used in any sequence:

CAPSLOCK LEFTMOUSE RIGHTMOUSE
CONTROL MIDDLEMOUSE

along with one command key from each of the four groups below:

SHIFT KEYS ALT KEYS LEFT AMIGA RIGHT AMIGA
----------------- -------------- ------------------
BOTHSHIFTS ALT COMMODORE AMIGA
LEFTSHIFT BOTHALTS LEFTAMIGA RIGHTAMIGA
RIGHTSHIFT LEFTALT
SHIFT RIGHTALT

Once you have selected the Key Code and the Command Keys for the KeyInput
Object, you can create the scripts for the events you wish to monitor. When finished,
select the "OK" button and then the "Exit" button to return to the Main Panel. To test
your newly added KeyInput Object, select "Browse." You can now use the KeyInput
Object you just created.

30

One circumstance which will prevent any KeyInput Objects from functioning has to do
with Field Objects. If a Field Object is currently activated, i.e., has the cursor in it,
then KeyInput Objects will not be processed by CanDo, because the Field is receiving
all of the input from the keyboard. Once the Field is no longer activated, normal
KeyInput Object handling will resume.

The KeyInput Object XtraTool is only required for creating and editing KeyInput
Objects. It is not required for running the created applications. In order to edit the
keys used in the CanDoMan game, you will need to have the KeyInput Object
XtraTool installed.

CrossRef
oduction

The CrossRef program is a utility which can analyze a given Deck and tell you the
following kinds of information:

The names of all Cards

The names and types of all Objects

The names of all Routines

Usage counts of all variables

All instances of references to particular variables, functions, strings or expressions

Every usage of particular commands

All instances of the use of indirection or other unresolved references

Much of the analysis can be limited to individual Cards rather than all Cards in the
Deck.

The information you gather with the CrossRef program can be used to find and fix
programming errors in your Decks, facilitate making global changes to Buffer or
Object names, and assist in providing an overall feel for what the Deck is doing. We
regard it as an invaluable complement to the functions of Theprinter utility.

Results from cross-reference analysis can be sent to a disk file or to a printer.

The CrossRef utility can be installed to anywhere in your working environment. It
makes sense to locate it in your CanDo work directory if you have a hard drive. If you
are using floppies, you can just leave it where it is, on a backup copy of the ProPackl
diskette.

Another program must be present in the C: directory before CrossRef will work,
however. The file DeckCrossRef can be found in the same directory with CrossRef,
and since it has no icon, you must copy it using the Copy command from a CLI or
Shell. Open a CLI or Shell and type the following command:

Copy ProPackl:TheCrossRef/DeckCrossRef C:

This operation will take a few seconds to complete. If your disk becomes full during
the copy, see what files you may be able to eliminate from the C: directory. It is
reaulred that DeckCrossRef be installed in the C: directory before the CrossRef utility
will work.

It is also required that cando.library be in the LIBS: directory of your system disk, or
that it already be running and installed in memory. Running CrossRef without
cando.library being available will cause a requester to open, letting you know that the
library is required.

After installing the DeckCrossRef and the CrossRef programs, you may run the
CrossRef program from Workbench by double-clicking its icon, or you can run it from
a CLI or Shell by typing its full path and filename.

Using The CrossRef Ut~llty . .
Once you have the CrossRef utility running, the next step to take is to load a Deck to
examine. Click on the words "Deck Name", at the far left of the CrossRef window,
and a file requester will appear to help you select a Deck to load. This is the same file
requester as the one used in CanDo, and its operation is identical. Use it to choose a
Deck to examine, and press its O K button. The selected filename will appear in the
field immediately to the right of the words "Deck Name".

When the first operation is performed that will require analysis of the Deck you have
named, the Deck will be loaded. If it is not a valid CanDo Deck, or cannot be found,
an error message will be displayed in the message area at the top left of the CrossRef
window.

The commands that you can choose from for getting information on a Deck are listed
in the requester area at the top right of the CrossRef window. This is a scrolling list of
commands, and to invoke any command you must double-click on the command name
in this list.

Some commands require that the field immediately below this list be filled in with
additional qualifiers. These are the commands which have the symbol , "{?)" ,
somewhere in the body of the command name in the list. The field to be filled out is
marked with the symbol, "{?)", immediately to its left. An example of a command of
this type is UsageOf Command {?). In this case, CrossRef will locate every instance
of the use of a particular command, as specified by the contents of the "{?)" field.

For example, to search for each usage of the CanDo scripting command GotoCard ,
just type "GotoCard" into the "{?)" field and double-click on the UsageOf Command
{?) command from the list. After a few seconds, information will appear in the
scrolling list which occupies the bottom of the CrossRef window. This is the Results
Area, and this list is where the results from all of your various inquiries about your
Deck are stored. This list can be printed to a printer or to a disk file. To print the list,
just type the name of the file or printer to which to print in the field next to the "Print"
button. (This field is immediately below the "Deck Name" field.) Use "PRT:" in this
field if you want to send the output to a printer, otherwise type in a valid filename.
Each time you press the "Print" button, the contents of the Results Area will be saved
to the print file, or sent to the printer.

Note that the Results Area is also a Memo; you can type anywhere into the Results
Area in order to make notes to yourself about the details disclosed by your inquiries.

To get a feel for the type of information that the CrossRef utility can yield, choose the
33

List Objects command from the command list. Each Object in your Deck will be
listed in the order in which it is found. In this case, each Object's detail will contain
the following information:

The name of the Card on which the Object exists
The Object type
The name of the Object

At any time, you can limit the scope of your inquiries to individual Cards. You do this
by typing the name of the Card that you want to search into the field called, "Limit
References To". You can also double-click on any word in the Results Area, and it
will be placed into the "Limit References To" field automatically. When searches are
limited to a given Card, the Card name will be omitted from the results that are placed
into the Results Area. To cancel any limitations on searches, simply clear the "Limit
References To" field.

Instructions for each CrossRef command follows.

List Cards will place the names of all Cards in the Deck into the Results Area, in the
order in which the Cards exist in the Deck.

List Objects lists every Object within the scope of the search (either every Card, or
just the Card named in the "Limit References To" field. The Objects will be listed in
the order in which they exist on their respective Cards.

List Routines will name every Routine defined in the Deck, in the order in which they
are defined. Information on each Routine will consist of:

The name of the Routine

List Variables (usage) creates a list of all variables used in your Deck, and orders
them by their frequency of use. Below is an example variable listing from the
CodeBuster Deck on the ProPackl disk.

* List Of Variables in all cards. (usage count) *********
* Usage Name
* 1ARGl
* 1 COLOROFPIXEL
* 1 MOUSEX
* 1 MOUSEY
* 2 B C - - -

* 2 G C
* 2 R C
* 3 COLOR1
* 3 COLOR2
* 3COLOR3
* 3COLOR4
* 3 REVEALED
* 4 B

* 4 CORRECTCOLOR
* 4 G
* 4 R
* 4TEMPCOLOR
* 4THELINE
* 5MYCOLORl
* 5MYCOLOR2
* 5 MYCOLOR3
* 5MYCOLOR4
* 5 X
* 6ARG2
* 6ARG3
* 6CORRECTCP
* 8 B1
* 8 G1
* 8 J
* 8 R 1
* 9 TRIES
* lORANDOM
* 11 MAXCOLOR
* 11 MINCOLOR
* 14 THISCOLOR

The number preceding each variable name is the number of times that the variable is
used in the Deck. This command sorts the list of variables so that the most frequently
used variables appear at the bottom of the list, and the least used variables appear at the
top. The list of variables includes usage of the variables that you have created for use
inside your Deck as well as CanDo system variables (e.g., MOUSEX and MOUSEY)
and CanDo functions (COLOROFPIXEL and RANDOM).

List Variables (alpha) creates a list of the same variables as the previous command,
however this list is sorted alphabetically by variable name.

UsageOf Command {?) requires that the "{?)" field be filled out with the name of a
valid CanDo command, such as Do or Gotocard. Given that a CanDo command
name is entered into the field, this command will create a list of all usages of the
command within the scope of the search as defined above. What follows is an example
search for the command Do in the CodeBuster Deck from ProPackl.

* Usage of Command "Do" in whole deck. *********
* Routine "ShowCurrent"
* Line Number: 1
* -> Do "Ellipse",MyColorl,65,35
*
* Routine "ShowCurrent"
* Line Number: 2
* -> Do "Ellipse",MyColor2,86,35

*
* Routine "ShowCurrent"
* Line Number: 3
* -> Do "Ellipse",MyColor3,107,35
*
* Routine "ShowCurrent"
* Line Number: 4
* -> Do "Ellipse",MyColor4,128,35
*
* Card "CodeBustCard"
* Object Type: Card
* Object Name: "CodeBustCard"
* Script Name: AfterStartup
* Line Number: 43
* -> Do "Ellipse",3,43,5 *
* Card "CodeBustCard"
* Object Type: Card
* Object Name: "CodeBustCard"
* Script Name: AfterStartup
* Line Number: 44
* -> Do "Ellipse",4,64,5 *
* Card "CodeBustCard"
* Object Type: Card
* Object Name: "CodeBustCard"
* Script Name: AfterStartup
* Line Number: 45
* -> Do "Ellipse",5,85,5 *
* Card "CodeBustCard"
* Object Type: Card
* Object Name: "CodeBustCard"
* Script Name: AfterStartup
* Line Number: 46* -> Do "Ellipse",6,106,5 *
* Card "CodeBustCard"
* Object Type: Card
* Object Name: "CodeBustCard"
* Script Name: AfterStartup
* Line Number: 47
* -> Do "Ellipse",7,127,5
*
* Card "CodeBustCard
* Object Type: Card
* Object Name: "CodeBustCard"
* Script Name: AfterStartup
* Line Number: 48
* -> Do "Ellipse",8,148,5 *
* Card "CodeBustCard"

36

* Object Type: Card
* Object Name: "CodeBustCard"
* Script Name: AfterStartup
* Line Number: 58
* -> Do "ShowCurrent"
*
* Card "CodeBustCard"
* Object Type: AreaButton
* Object Name: "Buttonl"
* Script Name: OnRelease
* Line Number: 5
* -> Do "Ellipse",ThisColor,65,35 *
* Card "CodeBustCard"
* Object Type: AreaButton
* Object Name: "Button2"
* Script Name: OnRelease
* Script Name: AfterStartup
* Line Number: 44
* -> Do "Ellipse",4,64,5 *
* Card "CodeBustCard"
* Object Type: Card
* Object Name: "CodeBustCard"
* Script Name: AfterStartup
* Line Number: 45
* -> Do "Ellipse",5,85,5 *
* Card "CodeBustCard"
* Object Type: Card
* Object Name: "CodeBustCard"
* Script Name: AfterStartup
* Line Number: 46* -> Do "Ellipse",6,106,5 *
* Card "CodeBustCard"
* Object Type: Card
* Object Name: "CodeBustCard"
* Script Name: AfterStartup
* Line Number: 47
* -> Do "Ellipse1',7,127,5 *
* Card "CodeBustCard"
* Object Type: Card
* Object Name: "CodeBustCardU* Script Name: AfterStartup
* Line Number: 48
* -> Do "Ellipse",8,148,5 *
* Card "CodeBustCard"
* Object Type: Card
* Object Name: "CodeBustCard"
* Script Name: AfterStartup

* Line Number: 58
* -> Do "ShowCurrent" *
* Card "CodeBustCard"
* Object Type: AreaButton
* Object Name: "Buttonl"
* Script Name: OnRelease
* Line Number: 5
* -> Do "Ellipse",ThisColor,65,35 *
* Card "CodeBustCard"
* Object Type: AreaButton
* Object Name: "Button2"
* Script Name: OnRelease

* Line Number: 5
* -> Do "Ellipse",ThisColor,86,35 *
* Card "CodeBustCard"
* Object Type: AreaButton
* Object Name: "Button3"
* Script Name: OnRelease
* Line Number: 5
* -> Do "Ellipse",ThisColor,107,35 *
* Card "CodeBustCard"
* Object Type: AreaButton
* Object Name: "Button4"
* Script Name: OnReiease
* Line Number: 5
* -> Do "Ellipse",ThisColor,128,35
*
* Card "CodeBustCard"
* Object Type: TextButton
* Object Name: "CompareV* Script Name: OnRelease
* Line Number: 32
* -> Do "GotItRight!" *
* Card "CodeBustCard"
* Object Type: TextMenu
* Object Name: "Show Answer"
* Script Name: Occurred
* Line Number: 6
* -> Do "ShowCurrent"
*

Notice that if the CanDo command for which you are searching is used in a Routine
script, the format of the detail of the usage is as follows:

The name of the Routine in which the CanDo command is used
38

The line number inside the Routine which contains the usage
The text of the script line in which the command is used

If the CanDo command is used in a Card script (Startup, AfterStartup, or OnLeaving)
or in a script associated with an Object (Occurred, OnClick, OnRelease, etc.), the
format of the detail of the usage will take this alternative form:

The name of the Card on which the Card script or Object script resides
The Object type which contains the reference (may be a Card or any Object from

an AreaButton to a Memo or List Object)
The name of the Card or Object containing the script which uses the CanDo

command
The script name or type (AfterStartup, etc. for a Card script, OnRelease, Occurred,

etc, for an Object script)
The line number inside the script which contains the command usage
The text of the script line in which the command is used

UsageOf Command {?) Unresolved will allow you to find all usages of a particular
CanDo command, similarly to the UsageOf Command {?) command, with the added
qualification that only if the first parameter to the CanDo command is an unresolved
string expression will the usage be recorded in the Result Area. In this way, you can
quickly find all indirect references to Cards, Routines, etc.

For example, in the CanDoMan Deck from ProPackl, certain Routines are invoked by
combining a common root name with a variable value, resulting in a valid Routine
name. By switching to the CanDoMan Deck by using the file requester opened by the
"Deck Name" button, or by invoking the "Open Deck" menu option, we can illustrate
this point. Fill in the "{?)" field with the CanDo command Do and select the UsageOf
Command_{?) Unresolved command. After a time, a list of all usages of the Do
command will be placed into the Results Area. In this case, however, the only usages
of the Do command that appear are those which involve the use of a string expression
in the name of the Routine being invoked.

This command has applicable uses with every CanDo command which can accept at
least one parameter, the first of which can be a string expression.

UsageOf Command {?) Resolved is the logical reverse of the previous command. It
will only report the usage of commands which have a fully resolved string value as
their first parameter. By selecting this command rather than the unresolved version
while examining the CanDoMan Deck, will produce a completely different listing.

UsageOf Expression {?) performs an analysis within the scope of the search and will
report the usage of all commands which have any parameters which include the
expression named in the "{?)" field. The format of this report is identical to that of the
UsageOf Command {?) command.

An expression in this context includes any part of an expression including logical or
mathematical operators. The following are all valid parts of expressions:

(cont. next page)

+, =, -3 \, I
MOUSEX
and user variable

UsageOf Function {?) will find and report on every scripting command in the Deck
which contains a reference to the function named in the "{?)" field. If the word
"RANDOM" were typed into the "{?)" field, every command which contained a
reference to the CanDo Random function, in any parameter to that command, would be
listed into the Results Area.

UsageOf String {?) is a similar command to the UsageOf Expression {?) command,
except that it will identify script commands with parameters which contain the literal,
case sensitive string specified in the "{?)" field. If the string specified is part of an
expression, it will not be found. For example, if the "{?)" field contained the string
"Fred", the following CanDo command would be found:

Do "Frederick"

whereas this command would not:

because this second example is not a string literal.

UsageOf Variable {?) is a command that performs essential the same task as UsageOf
Function {?) except that only variable names can be searched for by this method. The
variable can be a user variable or a CanDo System variable, such as MOUSEX. The
variable name must be entered into the "{?)" field before the command is selected.

CrossRef also has two menus, "Project" and "Output", through which certain features
are available.

The "Project" menu allows you to open a Deck to analyze ("Open Deck..."), which is
the same as pressing the "Deck Name" button at the far left side of the CrossRef
window. You can also get information about the CrossRef tool ("About"), as well as
quit the program ("Quit"). The program can also be quit by pressing the close button in
the top left corner of the window.

The "Output" menu offers three controls affecting the Results Area. "Clear" will
completely empty the Results Area. Be careful, there is no "undo" for this function!
The "Print to ..." menu function will open a file requester to assist you to choose a file
to which to direct printed output, if you so choose. The last option, "Print", performs
the very same function as the "Print" button directly underneath the "Deck Name"
button on the left side of the CrossRef window. It will cause the Results Area to be
printed.

This package also includes complete info on: c ~ ~ D ~ lntro pak *CanDo installation and set-up
*sttin. O ~ T ~ I (a very p o w e r ~ ~ l b m MOVAtr0ni-9

feature) Only $39.95 plus $3.50 shipping
*Valuable tips from the CanDo experts on Visa and MC accepted. To order,

the following subjects: Buttons & Menus, call (214)340-4991 voice or
Scripting Techniques, Technical Topics, (214)340-8514 FAX
and General Aids

C.PDO CDpynght 1990 LNOVAmmiu h. Cd h htro Pak requirts CanDo vl.02. If you ha? a prcviour M O V ~ ~ -dc-b =lvicc -&
version of CanDo, you can upgrade by stndmg in your of ~mv.mnic~, ~rrc. Amig. u; mgi~tcnd
two CanDo dust dish (Program and &Pas) and $4.00 mdrmyk of CommoQre-AmyR Inc.

