
L A - '7

For the first h'me
yw can homess tha

tremendous power
alreody built into

the hi go.^

Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDohDo.Do.Do.Do.Do.Do.Do.Do.DokDo.Dohh
Do.Do*Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDo.Do.Do.DotDo.Do.Do.Do.Do.DokDo.Dohh
Do*Do.Do.Do.Do.Do.Do.Do.DokDo.Do.Do.DohDo.Do.Do.Do.Do.Do.DohDohDohDo.Do.DoPh
Do* Do. Do. Do. Do. Do. Do. Doh Do. Do. Doh Do. Doh Do. Do. Do. Do. Doil Do. Do. Do. Doh Doil Do. Do.
Doh Doh Do. Doit Doh Doit Doh Doh Do. Do. Doh Doh Doh Do. Doit Doit Doit Doh Do. Doh Doh Doh Do. Do. Doh
Do. Do. Do. Dot Do. Do. Doh Doh Do. Do. Do. Do. Doh Do. Do. Dot Do. Doh Doh Doh Do. Do. Do. Do. Doh
Do. Doh Do. Do. Do. Do. Doil Doh Do. Do. Do. Dot Doh Do. Dot Do. Do. Doh Do. Do. Do. Doh Do. Do. Doh
Do. Do. Dot Do. Do. Do. Do. Do. Doh Do. Do. Do. Do. Do. Do. Do. Do. Do. Dot Do. Do. Do. Do. Do. Do.
Do. Do. Do. Do. Doil Doh Doh Doil Do. Do. Do. Doh Do. Do. Do. Do. Do. Do. Do. Doil Do. Do. Do. Do. Do.
DohDo.Do.Do.Do.DohDohDokDo.Do.Do.Do.Do.Do.Do.Do.DohDohDo.Do.Do.Do.Do.Do.Do.
Doh Do. Do. Do* Do. Doil Doh Doh Do. Do. Do. Do. Dot Do. Do. Do. Doh Doh Do. Do. Do. Do. Do. Doil Do.
Doh Do. Do. Doil Do. Do. Do. Doh Do. Do. Do. Do. Do. Do. Do. Do. Doil Do. Do. Do. Do. Doh Do. Dot Do.
Do. Do. Doh Doh Doh Doit Doit Do. Doh Doh Doh Do. Do. Do. Doit Doit Doit Do. Doit Doit Do. Doh Doh Doit Doit
Do. Do. Do. Doil Doh Do. Do. Do. Do. Doil Do. Do. Doh Do. Do. Do. Doh Do. Do. Do. Do. Do. Do. Do. Do.
Do. Do. Do. Do. Do. Doh Doh Do. Do. Doil Do. Dot Dot Do. Do. Do. Doh Do. Do. Do. Do. Do. Do. Do. Do*
Doit Doit Do. Doit Doh Doit Doh Doh Do. Doh Do. Doit Dot Doit Doit Doh Doh Doh Do. Doh Doh Doh Doh Doh Doit
Do. Do. Do. Do. Doil Do. Doh Doil Do. Doh Do. Do. Doil Do. Do. Do. Do. Do. Dot Do. Dot Dot Dot Doil Do.
Do.Do.Do.DohDohDo.Do.Do.Do.DohDo.Do.DokDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.
Do.Do.Do.DohDo.Do.Do.Do.Do.Do.DotDo.Do.Do.Do.Do.DohDokDo.Do.Do.Do.Do.Do.Do.
Do. Do. Do. Do. Dot Doh Doh Doh Do. Do. Do. Do. Do. Dot Do. Do. Doh Do. Do. Doil Do. Do. Do. Do. Do.
Doil Do. Do. Do. Dot Doh Doh Doh Do. Do. Do. Do. Doil Do. Do. Do. Doh Dot Do. Dot Do. Do. Doh Do. Do.
DohDokDo.Do.Do.Do.Do.Do.Do.DohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.
Doh Do. Dot Do. Doh Do.
Doil Dot Do. Do. Doh Do. Do. Do. Do. Do. Do. Do. Doil Dot Do. Do. Doil Do. Do. Do. Do. Doh Doh Dot Do.
Do. Do. Do. Doil Doil Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Dot Dot Do. Dot Doil Doil Doil Do.
Do. Do. Do. Do. Doil Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Dot Do. Do. Do. Do. Do. Do.
Doh Do. Do. Do. Doil Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doil Doh Do. Do.
Do. Do. Do. Doil Doh Do. Do. Do. Do. Do. Do. Doil Dot Dot Do. Do. Doh Doh Do. Do. Do. Doh Do@ Do. Do.
Do. Do. Do. Doil Doil Do. Do. Do. Do. Do. Do. Do. Do. Doil Do. Do. Doil Doil Dot Dot Dot Doil Dot Do. Do.
Do. Doil Do. Do. Doil Do. Do. Do. Do. Doh Do. Do. Doh Do. Do. Do. Do. Do. Doil Doil Doil Do. Doil Do. Do.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Doh Dot Do. Doh Doh Do. Do. Do. Do. Do. Doil Do. Do. Do. Do. Do.
Do. Do. Do. Doil Doh Do. Do. Do. Do. Do. Do. Doil Do. Dot Doil Dot Do. Doh Do. Doh Doh Doh Do. Do. Doh
Do. Do. Do. Doil Doil Do. Do. Do. Do. Do. Do. Do. Doh Do. Do. Do. Doil Doh Dot Do. Do. Do. Do. Do. Doil
Do. Doil Do. Do. Do. Do. Do. Dot Dot Doh Do. Do. Doh Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Doe Dot Dot Do. Doh Do. Do. Do. Doh Do. Do. Doh Do. Do. Do. Do.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doe Do. Do. Do. Do. Do. Dot Doh Do. Do. Do.
Do. Doil Do.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doh Do. Doh Doh Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doil Doil Doh Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do.
Doh Do. Do. Do. Do. Do. Do. Do. Do. Do. Doil Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doil Do. Do. Do.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Dot Do. Dot Do. Do. Do. Do. Doil Doh Do. Do.
Dot Do. Dot Do. Do. Do. Do. Do. Do. Do. Doh Doh Doh Doh Do. Do. Do. Do. Do. Do. Do. Do. Do. Doil Do.
Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDo.Do.DohDo.Do.Do.DokDo.Do.Do.Do.DohDohDo.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doil Dot Do. Dot Dot Do. Do. Do. Doil Doh Do. Do.
Do. Do. Dot Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doil Do. Do. Do. Do. Do. Do. Do. Do. Do. Do.
Do. Do. Doil Do. Doil
Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DokDokDo.Do.Do.DokDohDohDoh
Do. Do. Doh Do. Do. Do. Dot Do. Do. Do. Do. Do. Do. Doil Doil Dot Do. Do. Do. Do. Do. Do. Do. Do. Do.
Doh Doit Doh Doif Doit Doit Doit Doit Doit Doit Doif Doit Doit Doit Do. Do. Doit Doit Doit Doit Doh Doit Doif Doit Do.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doh Doil Do. Do. Do. Do. Do. Do. Do. Do. Do. Do.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doil Do. Dot Do. Do. Do. Do. Do. Do. Do. Do. Doh
Do.Do.Do.DokDo.DokDo.Do.Do.Do.Do.DoPDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doh Do. Do. Do. Do. Do. Do. Do. Do. Doh Do. Doh
Doh Do. Do. Doit Doit Doit Doh Doit Doit Doit Doh Doh Doh Doh Do. Doh Dot Doh Doit Doit Doh Doh Doh Doit Doh
Do. Doh Do. Do. Do. Do. Do. Do. Do. Do. Do. Doh Doh Doh Do. Do. Do. Do. Dot Do. Doh Doh Doil Do. Do.
Do.DohDo.
Do* Do. Do. Dot Do. Do. Do. Do. Dot Do. Doh Do. Doh Do. Do. Do. Do. Doh Doh Do. Do. Doh Do. Do. Do.
Do. Do. Do. Do. Do. Do. Doil Do. Do. Do. Dot Do. Doh Do. Doil Do. Do. Doil Dot Dot Do. Doh Do. Do. Do.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Dot Do. Doh Do. Do. Do. Do. Do. Dot Dot Do. Doil Do. Do. Do.
Doif Doh Doit Doit Doit Do. Doit Doit Do. Doh Do. Doit Do. Doit Do. Doit Doh Doh Do. Do. Doit Do. Doit Doit Doh
Do.Do.Do.Do.Do.Do.DohDo.Do.DohDo.Do.DohDo.Do.DokDohDohDo.Do.DokDo.Do.Do.Do.
Do. Doil Do. Do. Do. Do. Do. Do. Do. Do. Dot Dot Do. Do. Do. Do. Do. Doil Dot Dot Do. Do. Do. Do. Do.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Dot Dot Dot Dot Do. Do. Doil Do. Do. Do. Do. Do. Do. Dot
Do.DotDo.Dot
Do.Do.Do.DokDo.Do.Do.DotDo.Do.Do.Do.DohDo.Do.Do.Do.Do.DohDo.Do.Do.Do.DohDo.
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Dot Do. Do. Do. Dot Do. Do. Do. Do. Do. Do. Doh Do.
DohDo.
Do.DotDo.Do.Do.
Do.DohDo.Do.Do.Do.DokDo.Do.Do.Do.Do.Do.DohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.
Do. Doil Do. Do. Dot Do. Do. Do. Do. Do. Dot Dot Dot Dot Do. Do. Do. Do. Do. Do. Doh Do. Doh Do. Do.
DokDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDo.Do.Do.Do.
Do. Doh Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doh Doh Do. Doh Do. Do. Do. Do. Do. Doh Do. Do. Do*
Do. Doh Do. Do. Do. Do. Dot Dot Do. Do. Do. Do. Do. Do. Do. Do. Do. Dot Do. Do. Doh Doh Do. Do. Do*
Do. Do. Do. Dot Dot Do. Do. Do. Do. Do. Doil Do. Dot Dot Do. Doil Do. Dot Do. Doh Do. Doil Do. Do. Do.
Do.DohDo.Do.
Doh Doit Doh Doh Doit Doh Doh Doit Doit Doh Dot Doh Doh Doit Doit Doh Doh Doit Doit Doit Doh Doh Do. Doh Doh
Do. Do. Do. Do. Dot Do. Do. Do. Do. Do. Do. Do. Do. Dot Do. Do. Do. Do. Do. Do. Do. Doh Do. Do. Do.
Do. Do. Doh Do. Dot Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Dot Do. Do. Doil Do. Do. Do.
Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DokDo.Do.Do.Do.Do.Do.Do.DohDo.Do.DohDo.Doh
Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do. Doit Do. Doh Do. Do. Do. Do. Doh Do. Dot Do* Doil
Do. Do. Do. Do. Do. Do. Do. Do. Dot Do. Do. Do. Do. Do. Do. Do. Do. Dot Do. Do. Do. Doh Do. Do* Do.
Do.Do.DohDo.
Do.DokDokDo.Do.Do.Do.Do.Do.Do.Do.Do.DokDokDo.Do.Do.Do.Do.Do.DohDoPDo.Do.Do.Doil

The
CanDo
HowTo
Book 1

This manual and all programs, artwork, sounds, animations and utilities provided herein, with the exception of
the Amiia Workbench oromams. are entirelv coovri~ht 1989 bv INOVAtronics. Inc.. 8499 Greenville Ave.. Suite 209B. Dallas.
Tx 752%. All rights are re&rved. The progks-and documentation are sold 'AS IS" and without warranties as to
performance, merchantability, or fitness for a particular purpose. Sale of this software conveys a license for its use on up to
iwo comouters owned and owrated bv onlv tlie ourchaser. Coovina this software or documentation bv anv means
whatsoeier for any other is strictly prohibited. No &of &is manual may be Copied. ~e~roduceh , Translated or
Reduced to any Electronic Medium or Machine Readable Form without the prior written consent of INOVAtronin Inc.

However, programs produced by the included Binder program, may be distributed without royalty or license.
The Amiga system library format file "cando.libraty", which is required for certain programs produced in this way, may not
be distributed, nor can any other program, artwork sound or animation included herein be distributed.

CanDo's software and manual were written entirely by: Eddie Churchiil, Cash Foley, Tom Hardison,
Tun Martin, and Martin Murray. Special thanks to our families who missed seeing us for the past year.
Manohman, this was alottawork.

The following copyright and licensing information refers only to Amiga Workbench files contained in this package. - - -

Amiga Workbench Version 1.3
Co-t 1985,1986,1988,1989 Commodore-Amim,Inc.
Alfh&ts resewed.

Your use of the diskette indicates your acceptance of these terms and conditions:
1. Copslight: These programs and the related documentation are copyrighted. You may not use, copy, modify, or transfer
the programs or documentation, or any copy except as expressly provided in this agreement
2. License: You have the nonexclusive riaht to use any enclosed p r o m only on a sinale comouter. You mav load the
program into your computer's temporary m<mory (w). You may pl;jsically h-ansfer &e from one cbmputer to
another provided that the program is used on only one computer at a time. You may not electronically bansfer the program
from one comouter to another over a network. You mav not distribute conies of the oromam or accommvine doaimenta.
tion to others.' Your may not decompile, disassemble. reverse enuineer, mcdi i , or &$ate the dr dkumentation.
Your may not attempt to unlock or bypass any copy protection utilized with program. AU other rights and uses not
specifically granted in this license are reserved by Commodore and/or INOVAtronics.
3. Back-up and Transfer: You may make one (1) copy of the p r o m solely for back-up ~umoses. You must re~roduce
and include the copyright notice on the back-up copy. You may fraisfer and license the pro-duct to another party only if the
other party agrees lo the terms and conditions of this Agreement and completes and returns a registration card to
INOVAtronics. If you hansfer the program you must at the same time transfer the documentation and back-up copy or
transfer the documentation and destroy the back-up copy.
4. Terms: This license is effective until terminated. You may terminate it by destroying the program and documentation
and copies thereof. This license will also terminate if you fail to comply with any term or condition of this Agreement. You
agree upon such termination to destroy all copies of the program and the documentation.

Commodore Trademark Information:
Amiga i s a registered h n d e w k of Commodore-Amiga, Inc.
AmigaDOS is a registered lxademark of Commodore-Amiga, Inc.
Intuition i s a registered trademark of Commodore-Ami& Inc.
Workbench i s a registered trademark of Commodore-Amiga, Inc.
Other Trademadm
ARe.m William S. Hawes
Deluxe Paint 111 i s a trademark of Electronic Arts Inc.
CanDo and PowerSteering For The Amiga O 1989 INOVAtronics, Inc.

Fnr rmDo Help Call: 214-340-4992

INOVAtronics, Inc.
8499 Greenville Ave. Suite 209B
Dallas, Texas 75231 USA
214-3404991

I What's In
The
CanDo
HowTo
Book?

What Does CanDo Do?

CanDo Overview 1 - 1

Whatzindabox? 1 - 1

CanDo System Requirements 1 - 1

You CanDo a Backup 1 - 2

CanDo on a Hard Disk or a Floppy Disk 1 - 2

A couple of questions you might have... 1 - 3

r You CanDo It

Starting CanDo 2 - 1

You CanDo an Application 2 - 1

Lets Do It 2 - 1

First Project 2 - 2

Second Project 2 - 9

Decks & Cards

Decks & Cards Overview 3 - 1

Menus 3 - 1

Deck Menu 3 - 2

Card Menu 3 - 2

Misc. Menu 3 - 3

Status Panel 3 - 3

Edit Card 3 - 4

Card Editor 3 - 5

Objects Overview

Buttons

Windows

Menus

Fields

Document

Timers

Sounds

Animation

Disk

Routines

ARexx

Xtras

Stript Editor

Script Editor 5 - 1

Editor Tools 5 - 4

Paint Editor Tool 5 - 5

Text Editor Tool 5 - 8

Sound Editor Tool 5 - 9

Picture Editor Tool 5 - 10

DOS Editor Tool 5 - 11

File Editor Tool 5 - 11

Coordinates Editor Tool 5 - 11

Card Finder Editor Tool 5 - 12

Routine Editor Tool 5 - 12

Field Editor Tool 5 - 1 3

ARexx Editor Tool 5 - 15

Commands Overview

Expressions

Functions

FLowControl Commands

CardMovement Commands

Graphic Commands

Screen and Window Commands

Brush Animation Commands

Audio Scripting Commands

Document Commands

File I/O Commands

Icon Commands

ARexx Commands

Object Commands

Buffer Commands

Misc Commands

Appendices

Commands Index 7 - 1

LoadFlags Appendix 7 - 7

Advanced Features 7 - 8

Error Messages - Syntax Errors 7 - 10

Error Messages - Run Time Errors 7 - 11

Error Messages - File Errors 7 - 13

1
What Does
CanDo Do?

CanDo Overview 1 - 1

Whatzindabox? 1 - 1

CanDo System Requirements 1 - 1

You CanDo a Backup 1 - 2

CanDo on a Hard Disk or a Floppy Disk 1 - 2

A couple of questions you might have... 1 - 3

I L+ CanDo Does Do? 1 CanDo is a revolutionary, Amiga specific, interactive software
authoring system. Its unique purpose is to let you create real Amiga software
without any programming experience. CanDo is extremely friendly to you
and your Amiga. Its elegant design lets you take advantage of the Amiga's
sophisticated operating system without any technical knowledge. CanDo
makes it easy to use the things that other programs generate - pictures,
sounds, animations, and text files. In a minimal amount of time, you can make
programs that are specially suited to your needs. Equipped with CanDo, a
paint program, a sound digitizer, and a little bit of imagination, you can
produce standalone applications that rival commercial quality software. These
applications may be given to friends or sold for profit without the need for
licenses or fees.

Although CanDo is especially easy to use, it is extremely powerful
and versatile. Its uses range from building simple slide shows and interactive
presentations to animated multimedia productions, quality educational
software, and even sophisticated control applications that communicate with
external video and audio equipment. CanDo lets you build small programs
and add features as you need them.

Since CanDo opens the world of software development to all Amiga
users, it has the potential of making an endless number of applications
available to every Amiga owner. We are very excited about this becoming a
reality and hope to facilitate it with future enhancements and support.

Whatzindabox? - Along with this Manual, the package should contain Two Disks:
CanDo and CanDoExtras. Also included in the box is a Registration Card that
you should take the time to fill out and return to us. This will enable us to
inform you of CanDo revisions and will help our technical support staff to help
you.

Please take a look at the ReadMe files on each of the CanDo Disks.
They contain last minute information that was not available when this Manual
was printed. They may be viewed by double clicking their icons.

CanDo System
Requirements

CanDo will work on any Amiga computer that has at least one (1)
megabyte of memory. If you don't have a hard drive, it is recommended that
you have two 3 1/2" floppy drives. Since CanDo makes it easy to work with
sizable data like pictures and sounds, a hard drive and expanded memory will
dramatically increase your efficiency and productivity. Be sure your Arniga is
running WorkBench version 1.2 or greater.

This manual assumes you are familiar with the operation of your
computer as explained in the manual that came with your Arniga. You should
know how to use the mouse, start applications from WorkBench, and do
simple WorkBench operations.

YOU CanDo Please, before you use CanDo, make copies of all the original disks.
a Batkup Work with these copies and keep the originale in a safe place. For your

convenience CanDo is not copy protected so l ~ r e a d the word not the disk.

To make copies of the CanDo disks:

1. Write-protect both CanDo disks by flipping UP the write Protect tab on the
disks. This will protect them from accide&l erasure.

2. Place the CanDo disk into drive DFO: and @elect the disk icon so that it is
highlighted.

3. Select Duplicate from the WorkBench melPu. Select Continue when asked
to insert CanDo.

4. Insert a blank disk into drive DFO: when asked for the disk.

5. Exchange disks when requested and seled Continue until the COPY is
complete.

6. Once you have a copy, rename it by highlighting the disk icon and
selecting Rename from the WorkBench menu. Remove the ''COPY of " text
that was appended to CanDo. Be sure to delete any spaces that precede
the name.

7. Repeat the procedure for the CanDoExtraO disk.

CanDo on a CanDo on a Hard Disk or a Floppy Disk
Hard Disk or ~ a n ~ o is easy to install on your hard disk. You'll need at least
a Floppy Disk one (1) megabyte free on your hard disk beiore copying 00 and all the

support files.
For floppy disk owners, CanDo will fin directly from the working

copy you made. You must start your Arniga k t h this CanDo disk and run
CanDo from the icon. You will likely choose to install CanDo on your own
WorkBench startup disk. This is done by using the CanDoInstall Program
found on the CanDoExtras disk.

To install CanDo on your WorkBench di$k or your hard disk:

1. Start your computer normally and then inbed the CanD0Exti-a~ disk into a
drive.

2 Open the CanDoExtras disk by double clicking its icon on WorkBench.
Open the Utilities drawer.

3. Now the Installer program may be started by double clicking on its icon.

4. This program will guide you through the installation Process for both
floppy drives and hard drives.

5. Once the installation is complete, you may remove the CanD0Ext1-a~ disk
and close its window.

6. CanDo may now be started from your f l o w or hard disk by double
clicking its icon.

A couple of
quest~ons you
might have...

Why do I need to "Install" CanDo?

When CanDo is started, it looks in an Amiga system directory called
LIBS: and another called L: for support files. These are particular directories
that the Amiga uses to keep special files. The CanDoInstall program copies
these files for you.

What am I creating when I use CanDo?

The applications you create with CanDo are called Decks. This is
because they are comprised of Cards. In CanDo you work with Cards one at a
time and they may have completely different environments and characteris-
tics. When you save a Deck from CanDo, it is like an executable program that
you may start by double clicking its icon on the WorkBench screen. These
Decks are actually small files that use a "Library" that is installed on your
system. All CanDo Decks and CanDo itself efficiently share the use of this
library. This arrangement enables you to run many Decks at the same time
and use the Amiga's memory and its resources to the full extent of its capabil-
ites. Remember, the CanDo library is not a distributable portion of CanDo.

How do I make a distributable CanDo application?

When you are ready to make an executable version of your program,
you can do so easily with the Binder. This utility can create a distributable
version of your project in either of two ways:

1. Independent Project: A form of your Deck which will run on any Amiga,
regardless of whether or fiot CanDo is also available on that Amiga.
Programs produced in this way can be sold or distributed without a license
or fees of any kind. These programs have the primary part of the CanDo
support software built into them.

2. Dependent Project: A form in which the project will only run if you or
your friends, or potential customers, have CanDo already. This type of
bound project is significantly smaller in size than an Independent Project
(it shares the same library of functions that CanDo uses), and is the
perfect way to make a program which you intend to give or sell only to
people who already own CanDo.

Continued next page ...

To "Bind" a Deck, select the Deck's icon that you would like to make
standalone and then, while holding down the shift key, double click on the
Binder icon. It will guide you through the binding process and create a
standalone application. Remember the icon for your new application will not
be visible in a WorkBench window until it is re-opened. The standalone deck
may now be distributed along with any graphics or sound files that it uses.
Don't forget that these resource files must be found in the directories that
were specified when the Deck was created.

Can I make room on my CanDo disk if I don't need all the features?

CanDo is very modular in design. If you don't need some of its
features, you may remove them from your disk. If you don't use ARexx
objects you may open the Objects drawer and discard it. Similarly, you may
discard items in the EditorTools, Xtras, and HelpFiles drawers. Make sure
you have a backup of these files in case you need these features in the future.

The modular design of CanDo also enables you to add features in the
future when they become available.

How do I get help?

If you have a problem that this manual does not address, please call
our Support Staff at: 214340-4992 or if you have a modem, you can call our
Product Support BBS at: 214357-8511 (300/1200/2400 Baud)

1
/1
You CanDo I t
Index

Starting CanDo

You CanDo an Application 2 - 1

Lets Do It 2 - 1

First Project 2 - 2

Second Project 2 - 9

You CanDo It

You CanDo
an Application.

Lets Do It

There are two methods of starting CanDo.
First: CanDo has a Workbench Icon. Double-clicking on this Icon

automatically launches the program.
Second: CanDo may be launched from a CLI or Shell by typing ...

CanDo

and then pressing Return. CanDo will begin to load. The CanDo Reporter, a
small message window, will appear and inform you that the files that makeup
CanDo and its user interface are loading. The last message you will see is "All
done, finishing up."

Now, at the bottom of the display, you will see CanDo's Main Control
Panel and behind the panel is your default window.

The first software project that you're going to create is a very simple
one. When executed, this Program will open a Window, (or Card as we will
now call them). All CanDo applications consist of Cards and Decks. Cards
are the basic building blocks of any CanDo project. A Card contains a single
Window and all its Objects and Attributes. A Deck consists of several Cards.
Moving between Cards and Decks is a fundamental part of CanDo project
design.

We will begin working on the first Card of this three Card project. It
will have a full screen IFF Image displayed. On this Image, we are going to
place two Buttons (or Gadgets in Amiga-ese), one with the words "Next
Critter" written on it, and the other with the word "Quit." When the Button
marked Next Critter is clicked, a second IFF Image will be shown. Clicking
it again shows a third Image. Each Image is its own Card, with Buttons
identical to the ones on the other Cards that you have created. When any of
the Buttons marked Quit are clicked, the program will stop and the user will
be returned to the CLI or Workbench.

On the CanDo Main Control Panel there are three boxes: Status,
Cards, and Objects. There are two Buttons in the Status box: Design and
Browse. Selecting Design allows you to create your projects. You can select
Browse to test or run your creations at any time, without exiting CanDo.
Ready to start?

1. Click on the Design Button to begin working on your project.

- Window Button

Objects portion / Main Control Panel

2. Click on the Window Button in the Objects portion of the Main Control
Panel. This is the first step in the creation of a background image for
your first Card. You'll be shown the Window Editor. This is how you'll
describe your Window. You can type your Window's name in the Field
under 'Window Title" but for this example, we want to clear out the
default name.

3. Click in the Field then press the Right Amiga Key ... X which will clear
the Field. This will produce a blank Title Bar above your Window, giving
it a cleaner look.

4. Now click on the Dimension Button. The Dimension Requester appears.

Dimension Requester

5. Click on the Button to the right of "Picture". This brings up CanDo's File
Requester. Use the requester to locate the file Rabbitpic that was
included on your CanDoExtras disk. Refer to chapter 4-4 of the manual
for information on how it operates.

6. Choose the Rabbit.pic file. The Path Field now shows the correct
directory path and the File Field shows "Rabbit.pic."

7. Now click the Ok Button. This will return you to the Dimension
Requester. The Button next to "Picture" now shows, the highlighted
Name Rabbit.pic, the File you chose. When your Window does open it
will have the proper dimensions and resolution for the picture file you
have just chosen, with the picture as it's background.

8. Again click the Ok Button. This returns you to the Window Editor.
On the right, you'll see several Buttons. You've already used the first one
"Dimension". For this application, you'll also use the bottom one,
"Options."

9. Click on the Options Button. This will bring up the Options Requester
which has several choices. For this example, you will need to change
only one of the default settings.

10. Click on the first Button, The window has visible borders. The Button
will change to The window's borders are invisible.

11. Now click on the Ok Button. This will return you to the Window Editor.

Close Button
Depth Buttons

Sizing Button

W~ndow Editor.

12. Now click on Objects. This brings up the Objects Requester. Click on the
CloseButton icon to deselect it, we won't need one. Click Ok.

13. Click on the Window Editor's Ok Button. There's your Rabbit. You've
created your Window and you are back at the CanDo Main Control Panel.
To see the the whole picture ...

14. Click on the Up/Down Arrow Button on the right side of the panel. The
panel will drop out of the way.

15. Click the Up/Down Arrow Button again and the panel returns the to its
working position. You're now ready to add a title to this picture. To do
this you need to write a Script.

. E- Edit Cards

Cards portion / Main Control Panel

16. Click on the Edit Cards Button in the Cards portion of the Main Control
Panel. This will bring up the Card System. Here you will see a card
Requester with one file name in it "Card#lw. This is the Card you've been
working on. Since it is already selected ...

17. Click on the Edit Button. This will bring up the Card Editor. Here you
see three Buttons that allow you to attach Scripts to your Card. But what
is a Script anyway?

A script is a Command (or, more often, a series of them) to be
executed under certain conditions in a CanDo project. A Script is often
attached to an event in your application. In other words, events like
clicking a Button, activating (clicking in) a Window, or going from one
Card to another can cause a Script of Commands to be executed. Script
Commands can be used to play a sound or sound sequence, run
animations, move from one Card in a Deck to another Card, add text to a
Window and many more complex tasks.

While this example project uses scripts in their basic, most straight
for ward form, you may wish to take a moment to look at the complete list
of Scripting Commands, together with descriptions, syntax, and
examples, that appear in the Commands Section of this manual. This side
trip will give you an idea of the power and simplicity of CanDo's Scripting
Language.

18. Now back at The Card Editor, you will need to choose one of the three
Buttons to add the title to your picture. Your choices are: at the Card's
Startup, Afterstartup, or when Leaving the Card. You want the title to
appear in your Window immediately after the Rabbit graphic is displayed.

Click the Afterstartup Button.

Script Editor

19. In the Script Editor, type the following lines verbatim.

Setpen 2
PrintText "The Friends of Elly MaeW,7O ,45

The Setpen Command sets the color of the text to be written from the
Window's palette. The PrintText Command simply prints the text within
the quotes at the coordinates specified (70 ,45). This means 70 pixels
over and 45 lines down.

20. Click the Ok Button to add this Script to your project.

2 1. At the Card Editor, click O k

22. Now click Exit to leave the Card Editing System.
You're back at the Main Control Panel. You may want to go into Browse
mode to check your creation so far.

23. Click Browse in the Status Panel.

Cards portion / Main Control Panel

In the Cards portion of the Main Control Panel you see an Arrow
Button pointing to the right, that's the NextCard Button. When the
NextCard Button is clicked, the next Card in your Deck is rendered (or
"started-up.") on Screen one after another. When you reach the last Card
in your Deck and click NextCard again, CanDo loops back to the first
Card in the Deck. Since we have only one Card so far in this example,
clicking the NextCard Button will result in looping back to the same Card.

24. Now click the NextCard Button. Your Card, picture, title and all will be
freshly rendered on your Screen. Not bad!

Now, we want to make this good looking window do something else,
so let's Add some Buttons.

25. First, click on the Add Button in the Objects Panel.

Buttons Button

Objects portion / Main Control Panel

26. Then, click on the Buttons Button in the same panel. The Button Object
System Requester will appear. This Requester asks you to locate the
Origin Point of your new Button.

27. Click the Ok Button.
The Edit Button Requester will be lowered revealing your full Screen.
Move your Mouse to position the Pointer on Screen where you want your
Button. For this exercise move the Pointer to above the 'T' in the
word 'The".

28. Now click and release the Left Mouse Button to set the Origin Point.
Move your Mouse, notice that it now controls the shape and size of a
rectangle. Move the Mouse in any direction you choose, adjusting the
rectangle until you are satisfied with its size and shape.

If you don't like the Button for some reason, click the Esc Key and
start the process over.

29. If the location and shape are to your liking, click the Left Mouse Button.
The Button Editor Requester will be displayed and the location (origin)
coordinates of the Button you've just created, in horizontal and vertical
format, will have been entered for you automatically. You will also see the
Button shape you have created positioned on the Screen. You may edit
these by clicking in the field and typing new coordinates. Edit "Horiz" to
be 50 and "Vert" to be 25.

There are three types of Buttons in CanDo: Area, Text, Image. The
Button we're making will be a Text Button.

30. Press the Box next to "Text." This brings up the Font/Text Requester.
Here you will select your Font. The default setting of Topaz 8 Plain will
work well here.

Notice, there are several style options available. This time choose
Shadowed.

You'll also see three Color Selecton. Click the left one, it governs the
color of the text on your Button.

Across the bottom of the Screen you will see a Color Palette. Click
on a bright, light color. Your choice will be displayed in the Selector you
clicked on.

You can also choose colors using the Arrows on the Selector. You
may change the second Color Selector to suite your tastes. Try it.

3 1. Now, click in the "Text" Field and press the Right Amiga Key and X to
clear the Field. Now type ...
Quit
This text will become part of the Button.

32 Click the Ok Button. This will return you to the Button Editor Requester.
To enable the "Quit" Button to actually end a project we must attach a
Script to it. There are four Button Events which can trigger a Script. This
time you want the Script executed when the Mouse Button is let up after
being pressed. This is called a Release script.

33. Click on Release in the Scripts portion of the Requester. A Scdpt Editor
Requester will appear. Type:

quit
34. Click on the Ok Button.

35. At the Edit Button Requester, click on the Ok Button. Now you're back at
the Main Control Panel.

The procedure for making the second Button is exactly the same as
the first except that this Button's text and position will be different.

36. Click on Add and then on the Button Button in the Main Control Panel.
Place this Button's Origin to the right of the "Quit Button" you just
created and draw another small rectangle. You may adjust its coordinates
to a horizontal of 175 and a vertical of 25. This time, the text for the
button will be "Next Critter" and its Release Script will be:

N d a r d
When you have your new button finished you should click Ok at all Re
questers until you're back at CanDo's Main Control Panel.

Now when you click "Next Critter" the project will go to its Next
Card, which will also contain a Picture and some Buttons. What next
Card you say? You can make one in less than thirty seconds.

37. Click on the Edit Cards Button in the Cards portion in the main panel.
This brings the Card System back up.

Click on the Duplicate Button on the right of the Requester.
A second Card will added to your project. This Card is a duplicate of your
first Card. Since your first window was a Picture Window, the window in
your second Card will be a Picture Window as well, complete with same
graphic.

The new window also has the same Window Options and Window
Objects as the first window.

The Buttons and scripts are carried over to the new Card.

38. This window will require changes to the script, so, here at the Card
Editor, click on Afterstartup.

When the Script Editor comes up, select the menu option Clear
under the Scripts menu. Click Yes to verify that you really want to do
this. Then click Ok to leave the Sc*t Editor.

Click Ok at the Card Editor. Exit the Card Editing system. You are
now working on a new Card. And since we don't really want two pictures
of the same rabbit, let's change the graphic to a different critter.

39. Click the Windows Button on the Main Control Panel. In the Window
Editor, click on Dimensions and then select Picture Button again to get
the File Requester.

When it comes up, select the graphic file Porcupine.pic. Click Ok
Since the options of first window are carried over to this one, and we want
to use them as they are, you can now click Ok Your second Card is now
finished and operational.

40. The third and final Card will be by far the easiest to create. We are going
to clone the second Card, complete with graphic, buttons, and scripts.
Then, we'll simply substitute a new critter pic.

41. Repeat step 37 and there's no need to edit the Afterstartup Script.

42. Repeat step 38 and this time use the Mink.pic file. Return to the Main
Control Panel. I f you want, you can change the border style or text color
of any button by clicking Edit and then on the actual button you would
like to edit.

43. If you're not at the Main Control Panel, return to it for your final step in
this project. Under the "Deck Menu," select Save. You will be prompted
to give a filename and pathname. Now click Ok
And that's it! You've just created a working program. Congratulations.

Second Proiect I
Your second Project will be very different from the first. It will be an

extremely useful and flexible Application, and in some ways, easier to create
than your first one was.

We call this Application a "PowerPanel" and it puts almost any Amiga
Command or Application just a click of the Mouse away.

You create it using CanDo's DOS Command. This Command allows
you to run any Program as though it was a CLI Command. Because all
Programs cannot be run through CLI, you should always consult the
Program's Documentation before using it with CanDo's DOS Command.

Tho PowerPanel - A PowerPanel is (or at least can be) a Window that opens on the
Workbench Screen with several Buttons on it. For example, there could be a
Button that says "Paint" on it. When the Button is clicked, the PowerPanel
could start your favorite paint program.

These PowerPanel Buttons can set up entire environments: change
directories, make assignments ... do almost anything.

This PowerPanel example will be designed to perform functions
accessible to all Amiga/CanDo users:

Run CanDo
Run Phone Index (a CanDo application)
Open a new CLI
Run the WorkBench Calculator Utility.
Play some Sampled Sounds (just for grins)

They're a breeze to create and run, so lets get started.

1. Click the Design Button.

2. Click on the Windows Button in Objects. The Window Editor Requester
will appear.

3. Clear the 'Window Title Field and replace the title with... PowerPanel

4. Click on the Dimension Button.

Dinension Requester

Dimension Requester; 7
\

5. The Dimension Requester, appears. In the "osition and Size" portion set
the Window's X coordinate to 50 and the Y coordinate to 15.

6. Set the Window's Width to 177 and Height to 78.

7. You'll use four colors (the Workbench colors), so click on 4 under
"# of Colors".

8. Click Ok to return to the Window Editor Requester.

9. Click on the Objects Button to open the Object Requester.
Here you see graphic representations of these familiar Arniga

Window objects: Close Button, Depth Buttons, Drag Bar and Resizing
Button. When added to CanDo Projects, all four Objects perform their
standard functions.

For example: a Window's Close Button will execute a Script when
clicked which could quit the program, go to the next card, or perform any
CanDo Command.

Object Requester

For this Project select the Close Button, Depth Buttons, and the
Drag Bar. When selected, their Buttons will be Highlighted. Click Ok to
record these choices.

10. At the Window Editor Requester. Click Ok You are back at the
Main Control Panel and a smaller Window has been opened on your
Workbench Screen. This is your PowerPanel Window and you're ready to
create your PowerButtons.

First, we'll Add the Button that starts CanDo. It will be a Text Button
and will be created in the same manner as the Quit Button in the First
Tutorial Project. Only the placement of the Button on the PowerPanel
Screen and the Text on the Button will be different.

11. Click Add and the Button Button under Objects.

12. At the Add New Button Requester click Ok.

13. Move the Pointer to a position in the upper left comer of your PowerPanel
Window. Click the Left Mouse Button to set the Origin Point. Size the
Button rectangle as before and click the Left Mouse Button.

14. At the Edit Button Requester in the Origin section adjust the Button's
Origin Point by changing the Horizontal and Vertical coordinates to 13
and 14. The exact size you made this Button is unimportant because it
will automatically adjust to the size of the Text that we put in it.

15. Now click on Outline in the Border section.

16. At the Border Selector click on the Embossed Button. Now choose the
Border Colors you want using the Color Selectors and click Ok

17. At the Button Editor Requester click on the Box next to "Text" under
"Style." The Text Button Definition Requester will appear. In this
Requester you will set these parameters:

Font: Topaz
Font Size: 8
Font Style: Plain
Text Color: (Your Choice)
Text: CanDo

With these settings click Ok.

18. At the Button Editor Requester click the Release Button under "Scripts."

19. At the SCY@ Editor, the far right hand slider controls a List of Editor Tool
Icons. Locate and then Select the DOS Editor Tool.

DOS Editor Tool / Script Editor

20. At the CanDo File Requester use the File List on the right to find, then
Select the CanDo Program File. Click Ok

2 1. At the Script Editor you will see that the proper DOS Scripting Command
has been automatically typed into the Editor. Click on Ok

22. At the Edit Button Requester click Ok The Main Control Panel, your
Powerpanel Window and it's first Button will appear.

The remainder of the Buttons you will define for this Project are Text
Buttons also. Retrace steps 11 through 22 which you used to create your first
PowerButton but use these Button Definitions below. Other possible di£fer-
ences can be variations in Font choice, Text Color and Border Style. Use the
DOS Editor Tool to locate the program each button will start.

Following is a description of each Button you need to define:

Phone Index Button
Button Co-ordinates: 72, 14
Border Style: Embossed
Font: Topaz
Font Size: 8
Font Style: Plain
Text Color: (Your Choice)
Text: Phone Index
Program: CanDoExtras:Utilities/PhoneIndex

Calculator Button
Button Co-ordinates: 13, 32
Border Style: Embossed
Font: Topaz
Font Size: 8
Font Style: Plain
Text Color: (Your Choice)
Text: Calculator
Program: Sys:Utilities/Calculator

New CLI Button
Button Co-ordinates: 1 12, 32
Button Style: Embossed
Font: Topaz
Font Size: 8
Font Style: Plain
Text Color: (Your Choice)
Text: NewCLI
Program: c:NewCLI

23. Return to the Main Control Panel. Now, let's add some text to the
Window to explain that the Buttons at the bottom of the panel that we are
about to add are for playing sounds. Click on the Edit Cards Button in
the Cards box. The Curd System Requester will appear. Press the Edit
Button to edit the only card listed, "Card# 1" The Card Editor Requester
will appear. Press the AfterStartUp Button to add the Script that will be
performed after the card's window has been opened and all the Buttons
have been attached.

24. You want to print the text "Sound Samples" just below the Buttons you've
already made. Type in the following Script:

SetPen 1
PrintText "Sound SamplesW,35,48
PrintText

25. Press Ok to save the Script. This will return you to the
Card Editor Requester.

26. Press Ok again to return to the Card System Requester.

27. Now press Exit to return to the Main Control Panel.

28. Click on Browse, and then click the NextCard Button in the Cards panel.
You'll see the text you just created appear in your Window.

29. Now click the Design Button. You're going to add a few simple
unmarked rectangular Buttons. Each one, when clicked, will play a
different sampled sound.

30. Click on Edit and then on the Buttons Button in the Objects panel.

3 1. At the Button Editing System, click Add. When prompted, place the
Origin of the first of these sound buttons in the lower left corner of your
Window. This Button is going to be an "Area Button." When the Edit
Button Requester comes up, rename this Button "Soundl". Then, adjust
the Button's coordinates to 13'62.

32. Click on Area and the Area Button Requester will appear. Adjust the
Button size to 25'10, using the Width and Height Fields in the
Requester. All of our "Sound Buttons'' will be this size.

33. Click Ok to return to the Edit Button Requester.' The Border and High
light styles may be experimented with, but the defaults will work well for
your purposes. Now, you'll want to add a Release Script, so click
Release.

34. At the Script Editor, click the Sound Editor Tool on the right.

Sound Editor Tool / Script Editor

35. Select Set The Filename from the Play a Sound Requester. This will
bring up CanDo's File Requester. Find the DogBark.snd file, select it
and then click Ok.

36. Click Ok at the Play a Sound Requester. The Playsound Command will
have been typed into your script. Click Ok to save the script.

37. At the Edit Button Requester. click Ok. You are now back at the
Main Control Panel.

There will be three more "sound buttons" like this one, except with
different co-ordinates and different sounds attached.

Repeat Steps 29 through 36 using the Button definitions below:

Sound 2
Button Name: Sound2
Co-ordinates: 55,62
Area Button Size: 25,lO
Sound file: (Your Choice)

Sound 3
Button Name: Sound3
Co-ordinates: 97,62
Area Button Size: 25,lO
Sound file: (Your Choice)

Sound 4
Button Name: Sound4
Co-ordinates: 139,62
Area Button Size: 25,lO
Sound file: (Your Choice)

Save your Deck now. Under the Decks Menu Select "Save". use
CanDo's File Requester to set the Path and File Name for your Deck. Click
Ok and you're done.

3
Decks &
Cards Index

Decks & Cards Overview 3 - 1

Menus 3 - 1

Deck Menu 3 - 2

Card Menu 3 - 2

Misc. Menu 3 - 3

Status Panel 3 - 3

Edit Card 3 - 4

Card Editor 3 - 5

Detks
& Cards

A CanDo project is comprised of a Deck of Cards. CanDo Cards are
somewhat like Flash Cards in that only one is shown at a time. However,
unlike Flash Cards that only present information, CanDo Cards can both
present and receive information. Furthermore, you can make things "happen"
on a CanDo Card. You do this by making Objects.

The Window Object allows you to specify the overall appearance of
your Card. Buttons and Menus, for example, allow the user of your project to
tell it to do something. Other Objects allow you to easily receive information
or otherwise control what is happening.

By adding Objects to a Card, you design what it looks like and what it
does. The Card is simply a container for the Objects you give it. Some
applications only need a single Card, while others need many Cards to change
the interface, appearance or activity. By simply changing Cards, you can
cause dramatic or subtle differences in what is happening.

When you have designed a Deck, you can save it to disk. This allows
you to later load that Deck back into CanDo for further editing. The Deck can
be run separately by double clicking its icon from Workbench, or from a CLI
using the CanDoRunner program.

When you are ready to make an executable version of your program,
you can do so easily with the CanDo's Binder. It will create a new file that is a
runnable program. However, the program created by the Binder can not be
re-edited by CanDo. Make sure that you keep the original Deck saved by
CanDo for later editing.

This Chapter tells you how to work with Decks and Cards. Chapter 4
describes the Objects you can add to a Card. Chapters 5 and 6 describe how
to write the Scripts that make your application come to life.

Menus When CanDo's Main Control Panel is the active window, you can
access CanDo's Menus. They are not accessible when your application's
Window is active. By clicking on any portion of the Main Control Panel, not
necessarily on a Button, you activate the window. This gives you access to
CanDo's Menus when you press the right mouse Button.

CanDo's menus are: Deck, Card, Objects, and Misc. The Objects
Menu is described in Chapter 4.

Detk Menu The Deck Menu has five items: New, Open, Save, About, and Quit.

New
New deletes all existing Cards and starts you up in the default

configuration. (See the Advanced Topics Appendix for changing the
default Deck.)

Open
Open replaces the current Deck with one loaded from a file. CanDo's

File Requester allows you to locate the file. The file must be a Deck created
with CanDo. You cannot load a Deck that has been made into a stand-alone
program using CanDo's Binder.
Save

Save writes the current Deck to a file specified with CanDo's File
Requester. A saved Deck can be loaded into CanDo using Open. It can also
be run separately by double clicking its Icon, or bound into a stand-alone
program using CanDo's Binder.

About
About simply displays a little information about INOVAtronics

and CanDo.

Quit
Quit allows you to leave CanDo. A Requester will warn you if you

have modified the current Deck.

Card Menu The Card Menu has five items: Goto, First, Last, Previous, and Next.

Goto
Goto ... allows you to go to a specific Card. A requester will show all

the Card Names. Click on one of the names to highlight it. Clicking on the
Goto Button or double clicking one of the entries will cause you to change
Cards. When you want to stay on a Card, select the Exit Button.

First
First causes CanDo to go to the First Card in the Deck.

Last
Last causes CanDo to go the Last Card in the Deck.

Previous
Previous causes CanDo to move back one Card. If you are on the

First Card, this will put you on the Last Card.

Next
Next causes CanDo to move forward one Card. If you are on the Last

Card, this will put you on the First Card.

Mist. Menu

Status Panel

The Misc. Menu has two items: SuperBrowse and System Info.

SuperBrowse
SuperBrowse temporarily removes the CanDo interface to your

application. The Main Control Panel will disappear, and your application will
be able to interact a little faster. This mode allows you to see exactly how your
application will run as a separate program.

When you enter SuperBrowse Mode, CanDo will open a small
Window on your Workbench Screen. When you double-click on the Window,
CanDo's Main Control Panel will reappear and you will no longer be in
SuperBrowse Mode.

System Info
System Info will display a requester displaying Available Memory,

CanDo version information. and other useful statistics.

The Status Portion of the Main Control Panel contains the
Browse and Design Buttons.

Previous Card

I Edit Card

ra tus

Status Portion
Main Conh-ol Panel

I I Goto

First Card

Browse
By selecting Browse, you can test your application. Because CanDo

is monitoring your activity, your project will not be as responsive as when it is
running in SuperBrowse Mode or as a separate application.

Design
When Design is selected, you can construct your application. Select-

ing any Button on the Main Control Panel, other than Browse, will automati-
cally select Design.

The First, Last, Previous, Next, and Goto Buttons work the same
as their Menu counterparts.

Edit Card Selecting the Edit Card Button brings up the Card List Requester.
From this Requester you can Add, Edit, Delete, Duplicate and Reorder Cards.

Card List Requester.

The list on the left side of the Card List Requester contains the names
of all the Cards in the Deck. You can highlight a Card Name by clicking on it
in the list. The Buttons on the right side of the Requester will work with the
highlighted entry.

Add
The Add Button allows you to Add a new Card to the Deck.

The New Card will not contain any Objects. When you click this Button, the
Card Editor Requester will be displayed. This Requester is described later in
the Chapter.

Edit
The Edit Button allows you to edit the currently highlighted Card. If

you doubleclick a Card Name, it will also edit the Card. In either case,
CanDo will go to the selected Card and display its Card Editor Requester.

Delete
The Delete Button deletes the highlighted Card. A Requester will

ask you if you really want to delete it. Be certain that you want to delete it.
The Card and all of its Objects are disposed of completely.

Duplicate
The Duplicate Button makes a copy of the selected Card and Objects.

The Card Editor Requester is then displayed for this Card. This allows you
begin a new Card with a copy of the existing Objects.

The list shows the Cards in the current order. The two large Arrow
Buttons allow you to reorder the Cards. By using these Buttons, you can
move the highlighted Card up and down through the list.

Card Editor The Card Editor Requester has a Field for the Card Name and three
Buttons for Scripts. You can change the Card Name by simply changing the
name in the field.

Card Editor Requester

The Card has three Scripts associated with it: Startup,
Afterstartup, and Leaving.

startup
The Startup Script is performed before your Card's window opens

and before any other Objects on your Card are created. This is a good place
from which to initialize variables, load files, etc. Because the window has not
yet been opened, this Script cannot perform any sort of graphics commands.

Afterstartup
In this Script, which is performed after your Card's window and other

Objects (like Buttons) have been made, you may want to draw into your
Card's window, activate a particular text field, start a Brushhimation or
sound playing, or perform other last-second steps before the user of your
application begins to interact with it.

Leaving
The Leaving Script is performed anytime you switch Cards. This

Script runs after your Card's Objects have been removed from the window.
This is the proper place to save any files that were changed on the Card that is
ending, before moving on to another Card or quitting entirely.

NOTE: You cannot put any Card Movement Commands in
the Leaving Script.

4
Ob'ects
In d ex

Objects Overview 4 - 1

Buttons 4 - 5

Windows 4 - 14

Menus 4 - 20

Fields 4 - 25

Document 4 - 28

Timers 4 - 32

Sounds 4 - 34

Animation 4 - 3 5

Disk 4 - 37

Routines 4 - 38

ARexx 4 - 39

Xtras 4 - 4 0

Lets start with some CanDo basics. Applications are comprised of a
Deck of Cards. You can have as many Cards in a Deck as you wish. Each
Card in the Deck has a Window. Like flash-cards, CanDo Cards are shown
one at time.

It's up to you how each Card looks. They can look similar to each
other or they can look completely different. CanDo gives you a lot of freedom
using the Arniga graphics and sounds.

CanDo Objects, such as Buttons and Menus, are added to a Card
allowing you to interact with your application. Other Objects, like Timers,
allow you to set up events to control your application.

The Objects on a Card make things happen in your application.
The Objects portion of the Main Control Panel allows you to Add and Edit the
Objects.

Add Objects

I Buttons

Menus I I

Timers

Routines

Animation

Windows 1

I
Disk

Documents Sounds

Edit Objects

Objects Portion of the Main Control Panel

Xtras

While in Design Mode, either the Add or Edit Button is highlighted.
'This indicates the selected method of working with Objects. When Add is
selected, clicking one of the Object's Buttons allows you to add an Object.

Each Object has an Editor Requester which allows you to define how
the Object appears and performs. While defining an Object, you give it a
Name. CanDo uses the Name to identlfy the object. Each Object on a Card
must have a unique Name. However, you can use the same Name for Objects
on different Cards.

When Edit is selected on the Main Control Panel, clicking on a
visible object (Buttons, Fields, Documents, Window Close Buttons or select-
ing a Menu) brings up the Editor Requester for the Object. Alternately,
clicking one of the Object Buttons in the Control Panel brings up an Edit List
Requester displaying the Names, of the selected Object Type, on the current
Card. From this Requester you can Add, Edit, Delete, Duplicate and Reorder
Objects.

Edit List Requester

The Add Button works just as Add from the control panel. Selecting
the Add Button on the Control Panel is simply a shortcut to using the one on
this Requester.

The Edit Button allows you to edit the currently highlighted Object
in the list. Clicking this button brings up the Editor Requester for the Object
Double clicking an entry automatically selects Edit.

The Delete Button deletes the highlighted Object. A Requester will
ask you if you really want to delete the Object. Be certain that you want to
delete it. The Object is disposed of completely. It does not put it in the Paste
Buffer (see Object Menus).

The Duplicate Button makes an exact copy of the selected Object.
The Object will be renamed in the same manner Workbench uses in duplicat-
ing files (ie. "copy of "). When you press the Duplicate Button, the Editor
Requester will be displayed with the copy of the Object. This allows you to
easily create similar Objects without starting from scratch each time.

You can also Reorder the Objects. Visible objects, such as Buttons,
can be placed on top one another. The list shows the order in which Cando
adds the Objects to the Card. Therefore, Objects that are lower in the list will
appear on top in the window. The Move Object Up Button moves an object
up in the list and the Move Object Down Button moves it down in the list.

Object Scripts Objects make things happen by performing Scripts. Each Object has
at least one Script that can be performed. Some can have more than one. The
Object's Editor Requester contains either a button naming each Script or a
Scripts Button that will display the available Scripts. You can tell if a Script
already exists when the Button is black. Clicking the Scripts Button brings
up the CanDo Script Editor.

Object NUS Clicking on any area of the Main Control Panel (it does not have to be
on a Button) allows you to access CanDo's menus using the Right Mouse
Button. Under the Objects Menus, you can select from Browse, Add, Edit,
Copy, and Paste. The Browse, Add, and Edit options perform in the same way
as their corresponding Buttons on the Main Control Panel. The Menu
equivalents provide convenience in that the Amiga Shortcut Keys of
Arniga ... B, Amiga ...A, and Amiga ... E can be used to select them.

The remaining options are Copy and Paste. These Options allow you
to Copy an Object into a Paste Buffer, and to Paste it onto another Card.

Selecting Copy allows you to copy an Object using two methods.
First you can click on a visible Object on your card. After doing so, the
previous Paste Buffer is replaced with the selected Object. Selecting one of
your Menu Item copies all Menu Items and Subitems from the selected Menu
into the Paste Buffer.

For the second method, after selecting Copy from the Objects Menu,
you click on one of the Object Buttons in the Main Control Panel. This
displays the list of Object Names of the selected Object Type. Double clicking
an Object name, or clicking the Copy Button puts the Object into the Paste

Buffer.

Selecting Paste from the Objects Menu adds the Object to the
current Card. When Paste is selected, the Object's Editor Requester will be
displayed. You can then modify the Object before selecting Ok, or select
Cancel to abort the Paste operation.

CanDo
File Requester

At various times, CanDo will display its File Requester requiring you
to specify the name and location of a file.

CanDo File Requester

A File specification has two parts: the Path and Filename. The Path
Field shows where the file is, and the File Field shows the name of the file.
You can type directly in these Fields or use the two Lists to set them.

The smaller List on the left sets the Path. You can use it to locate the
Path using Drawers, Disks, Physical Devices, and Assignments. By default,
the small list contains the list of Drawers or SubDirectories in the directory
indicated by the Path. Clicking one of its entries, sets the Path to the indi-
cated directory.

Clicking the Drawer Button changes its name to Disks and the small
list will display the available Disk Volumes. Clicking the Disks Button
changes it to Physical. The list now displays the available physical devices.
Not all of these can be used for accessing files! Clicking the Physical Button
changes it to Assign. Now the list shows the available assignments. (See your
Arniga documentation for setting these.) Finally, clicking the Assign Button
sets the list back to Drawer.

Clicking the Parent button changes the current Path to the parent
directory if there is one.

The larger List on the right, allows you to select a File Name. Click-
ing an entry puts the name in the File field. Double-clicking an entry selects
the name as though you clicked Ok.

Sometimes, the File Requester will have an additional preview button
on it. For example: when you are suppose to find a picture file, there will be
an additional button Show It!. Clicking it allows you to see the currently
selected file. When finding a sound file, the Hear It! Button allows you listen
to it.

Clicking Ok selects the current file indicated in the Path and File
Fields. If the File needs to be a specific type, CanDo will verify it and display
an Error Requester when it is wrong.

While using the various Requesters within CanDo, you have the
option of selecting Cancel or Ok. Ok accepts any changes you have made in
the Requester. Cancel causes CanDo to forget any changes. Selecting either
Cancel or Ok returns you to the previous Requester if there was one.

Buttons
A Button is an area in a window that can be clicked with the Mouse

Pointer. When clicked, specified actions can be performed. CanDo allows an
unlimited number of Buttons to be defined on the Screen.

Selecting Add in the Objects Portion of the Main Control Panel allows
Objects to be added to your application. If you click the Button Button on the
same panel the Add New Button Requester will come up, directing you to locate
the Origin Point of the New Button with your Mouse. Now click the Ok
Button. The Add New Button Requester will be lowered revealing your full
Screen. Next move your Mouse, positioning the Pointer at a location on the
Screen where you want a Button. Now click the Left Mouse Button to set the
Origin Point. Your Mouse now controls the shape and size of a rectangle
representing a Button area. Move the Mouse in any direction you choose,
adjusting the rectangle until you are satisfied with its size. If you don't like the
Button for some reason, press the Esc key and start over. If the Button is to
your liking, click the Left Mouse Button again and The Button Editor
Requester will be displayed.

Button Editor

b Pnknawn Highlight

Scripts

a!ELJ -
Button Editor Requester

The Button Editor Requester allows you to edit the unique information
about each button. It displays the Button's Name, Origin, Button Style,
Border and Highlight Styles, and the available Scripts. The origin coordinates
of the Button, in X (horizontal) and Y (vertical) format, will have been entered
for you automatically.

Name The Name is a group of characters identifying the button. The same name
can not be used for more than one Object on a card. The button is given a
default name " Unknown ". However, you probably will want to name it some-
thing that is meaningful to you. The Name can include any character. It has a
maximum length of 20 characters. When you press Return, CanDo will verify
that the name is unique.

Origin The Origin always indicates the location of the upper left comer of a
Button. The Horizontal value indicates the distance in pixels from the left
edge of the Window. The Vertical value indicates the number of pixels down
from the top of the Window. The present values can be changed by clicking
in these Fields and typing in new values with the keyboard.

You can also set these values using the Mouse. First click the Origin
Button, and the Add Button Requester will be lowered. Your Mouse now
controls the position of a rectangle representing the Button Area. Now move
the rectangle where you want the Button to be. If, however you choose not to
change your present Button you can return to the Button Definition Requester
by pressing the Esc Key. When the new location looks good just click the
Left Mouse Button and the Button Definition Requester will reappear.

Style CanDo has three Button styles: Area, Text and Image. When adding a
Button, a rectangular area is defined. This area represents the "Hit Area" for
an Area Button. Area Buttons do not have an image or text representing the
Hit Area. However, they can be placed over images in the Window.

In addition to Area Buttons, CanDo allows you to use Text and Iinage
Buttons for representing Image and Irregularly Shaped Buttons. These
Buttons are described in greater detail in the Text and Image sections of this
manual.

The check mark in the Box next to "Area" indicates the current Button is
an Area Button. Each Button style has a Requester containing unique infor-
mation for its particular requirements. Clicking the Box next to the indicated
style, brings up the appropriate Requester and changes the Button style.
Clicking Cancel, aborts this process.

Area Button Request01

Clicking on the Box next to "Area" brings up a requester containing
information about the size of the Area Button.

This requester allows you to view or change the Width and Height of the
Area Button. These values can be changed using the Keyboard. However,
they can also be set using the Resize On Window Button. Clicking on this
Button lowers the Main Control Panel. Your Mouse is now controlling the
lower right corner of a rectangular box. The upper left comer is stationary on
the screen. This corner indicates the Origin of the Button. The rectangular
box represents the Hit Area for the Area Button. By positioning the movable
corner, and pressing the Left Mouse Button a new area for the button is
defined. Pressing Esc, returns to the Area Button Requestor without modify-
ing the Width and Height values.

norizontiil
Height

I Width I
Button Origin and Size

Border An Area or Text Button can have a Border around its Hit Area. There are
six Border Styles from which to choose. The default Border Style, Outline, is
shown in the Button Definition Requester. By clicking on the Border Button,
the Border Selector, will be displayed.

lekl do uou want.. .

Border Selector

The Border Selector displays the border styles from which to select.
The selected style will have a Black Hit Area. Clicking the Hit Area of the
desired button selects the matching style.

The bottom row contains a Cancel Button, two Color Selectors, and an
Ok Button. The two Color Selectors change the colors used in rendering the
buttons border. The colors can be selected by using the two arrows on the
Color Selectors or by clicking one of the available colors at the bottom of the
Screen. The selected color is shown in the active Color Selector. Clicking on
one of the Color Selectors makes it active. The sample buttons on the Border
Selector depict the use of these colors.

Highlight When you click on a Button that you have made with CanDo, the Button
area can change to the existing color's Complementary color, or Outline the
area, or do neither. The default Highlight Style, Complement, is shown in the
Add Button Requester. By clicking on the Highlight Button the Highlight
Selector will be shown.

Highlight Selector

The three Highlight Styles: None, Outline, and Complement are shown in
this requester. Clicking on the associated button sets its Hit Area to Black.

Button Stripts There are four types of events that can occur by using a Mouse Button.
They are Click, Drag, Release, and Double Click. Each of these events can
have a Script associated with them. A script is simply a set of instructions to
perform.

Click
Click events happen when the Left Mouse Button is pressed while the

mouse pointer is over the button. This type of event is useful for providing
immediate response to the mouse.

Drag
Drag events occur as the Left Mouse Button is held down and moved

over the button's Hit Area. This is an uncommon type of button usage.
However, these movement events can be used for tracking mouse movements
in applications such as paint programs.

Release
Release events occur when the Left Mouse Button is pressed and re-

leased while over a button. This is the most common button application. By
delaying until the button is released, the user can decide to move the pointer
off the button, thus avoiding an unwanted action.

Double-Click
Double-Click events happen when the Left Mouse Button is clicked

quickly two times. The Arniga Preferences allows a user to adjust the time
delay used in determining a Double-Click. This type of event is used to insure
that the user did not inadvertently press a button. The Icons on Workbench
work in this manner.

Text Button Like an Area Button, a Text Button has a rectangular Hit Area. However,
CanDo will automatically display a text message in the hit area. You specify
the text message, the font and point size, color, and style. The text is simply
characters that you want to represent the action performed by the button. It
can use any font available in your "Fonts:" directory and can also use a variety
of Text Styles, to enhance its appearance. Like an Area Button, a Text Button
can have a Border around its Hit Area.

An Area or Image Button can be changed to a Text Button by clicking in
the Box next to "Text" in the Button Definition Requester. You can change the
style of a Button as many times as you wish. When you have made your final
choice there is one important thing to remember about this process: each
Style has unique style information that must be saved. That information is
saved only when you click Ok on the Button Definition Requester.

The Text Button Definition Requester is displayed when the Box next to
"Text" is selected. A window on your screen displays the appearance of the
text message.

Selecting a Font
and Point Size

Text Button Definition Requester

The Text Button Definition Requester allow you to select the font and point
size, the Text Style, the colors used, and the text message to use in the button.
Notice that you don't set the size of a text button. Its size is determined
automatically by the size of the message in the selected font.

The available fonts in your Fonts: directory are shown in a list. A font can
be selected by clicking on its name with your mouse pointer. If you have
more fonts than can be displayed in the list, the slider allows you to scroll
through the list. The currently selected font is shown below the list. The
point sizes available for that font are shown in the list next to the fonts. The
selected size is shown below its list. When the font or size is selected, the
sample text will be updated to show its appearance.

CanDo uses the current Fonts: directory. Some of you may have more
than one Font directory. With applications such as Paint programs, you can
change directories while working on a project. This is because the font is only
used while you are rendering text to the screen. Afterwards, it is not needed
anymore and you can change font directories.

selettinl Text Sty e

text seledi~ Co ors

Selecting Text

Because CanDo uses the selected font when displaying a button, all fonts
used by CanDo should be in the currently assigned Fonts: directory. If you
change the fonts in this directory, remember to run FiFonts before using
them. If the selected font can not be used, the system's default font will be
used.

The Arniga operating system supports Plain, Bold, Italic and Underline
text styles. CanDo provides enhanced styles of Embossed, Outlined,
Shadowed, and Ghosted.

Selecting Plain deselects all other Text Styles. Bold, Italic, and Underline
can be used with each other along with one of CanDo's enhanced styles. Only
one enhanced style can be used at a time. The Sample text shows the results
of the selected styles.

The Text Selector has three Color Selectors. The first one is the primary
color. It is used with all styles for depicting the text. The other two Color
Selectors are used with the enhanced styles. The colors available in the Color
Selectors are the ones currently used in your screen. Different color combina-
tions provide different effects. Playing around with different styles and colors
will give you the feel of how to use them.

The Text defaults to the same name used for the button. However, it
doesn't have to be the same. The text can be changed using the keyboard.
Spaces at the beginning and the end of the text can be used to make the
button larger.

Selecting Cancel does one of two things. If the Button was previously
of a different Style the original Button Style will be restored. If it was already a
Text Button, any changes made will be forgotten. Selecting Ok accepts any
change.

Image Button Imag
is needed
allow a pc
pictures a
Button. i
transpare
this one c
Button.

Whilc
This meal
image, t h ~
arrows, tc

An In
Button Dt

e Buttons have a small picture for a Hit Area. A "DPaint" style Brush
to define the picture for an Image Button. Most paint packages

brtion of a picture to be clipped and saved in a file. These small
Ire called Brushes. CanDo allows a Brush to be used as an Image
Vhen a Brush is clipped from a picture, the background color is
nt. While the Brush is rectangular, the Image appears to exclude
,olor. CanDo supports this technique in utilizing the Brush as a

the background color is drawn, it is not included in the Hit Area.
ns that when the mouse is clicked on the background portion of the
e button is not activated. This allows irregular shapes, such as
be used without including the area around the image as a Hit Area.

nage Button is created by clicking in the Box next to "Image" in the
$inition Requester. This will display the Image Button Requester.

Image Button Requester

The Image Button Requester allows you to select a "DPaint" style brush
file for the image. The Image Name Button indicates the Name of the Brush
File. By clicking the Button, you can locate the file using CanDols File
Requester.

This Requester has a Button called "Show It!" The Show It Button loads
the Brush File and displays it in a Window on your Screen. This allows you to
see what the brush looks like. Don't be alarmed if a large brush is not
completely visible in the Window. The purpose of this feature is for you to
visually verify its appearance. If it is not a valid Brush File, CanDo will display
an Error message. If the Brush does not use the same display mode or color
palette as your screen, it might not appear as you expect. Keep in mind that
the Arniga can use only one display mode and one color palette on a single
screen. However, with some planning, you shouldn't have too much trouble
getting predictable results.

Alternate lmage -
Button

CanDo allows you to use the shape of a brush as the hit area, without
using it's image. Clicking the Box next to "Use Shape Only" toggles this
feature. By selecting this feature, the non transparent colors in the brush
image define the hit area of the button. However, the image of the brush is
not rendered on the screen. This feature allows irregularly shaped buttons to
be used without changing the image on the screen.

As with the Area and Text Button Definition Requesters, clicking Cancel
aborts a style change or of any changes made in the Image Button Definition.
Clicking Ok accepts changes and returns to the Button Definition Requester.

An Image Button, that is not using the "Use Shape Only" feature, has an
additional Highlight option. Clicking on the Button in the "Highlight" section
of the Button Definition Requestor, displays the Highlight Selector.

Highlight Selector with Alternate lmage

However, this time the additional option, Alternate Image is available.
Clicking on this Button displays CanDols File Requester, allowing you to
locate the Brush File to use as the Alternate Image. The Show It Button
allows you to preview the Image. It is suggested that the Brush used for the
Alternate Image be of the same dimensions as the Brush used for the Image
Button. Otherwise, portions of an image will not be cleared when the image
changes.

A Card always has a Window. The Window Object allows you to
customize each Card's Window. You can change the resolution, number of
colors, or provide a background image. You can also have close, resize and
depth buttons. Several other options allow you to tailor the appearance of the
Window.

Selecting the wndow object from the Main Control Panel, brings up
the Window Editor Requester.

Window

Window Editor Requester.

The Window Editor allows you to specify a Title for the Window.
Along the right side of the Window Editor Requester, are four Buttons:
Dimension, Window Colors, Objects, and Options. Each of these Buttons
opens a Requester allowing you to control specific aspects of the Window.
The Window can have four scripts associated with it: CloseButton, Resize,
Deactivate, and Activate.

Title This Field allows you to specify a Title for the Window Title Bar. If
the Window Title is empty, (you can do this easily by clicking in the Field and
pressing the Amiga..X) no Title will appear. In addition, if you do not specify
a close button, depth buttons, and dragbar (see Window Objects) and the
Window Title is empty, the Window will not have a Title Bar.

If you want to insure that you have a Title Bar, yet you don't want to
have a Title, put a space in the Window Title Field.

Dimension Clicking the Dimension Button on the Window Editor, brings up the
Dimension Requester.

Display Mode

Position

Dimension Requester

The Dimension Requester allows you to specify the Window size, and
number of colors. Alternatively, you can specify a Background Image. In
addition, you can specify an initial position.

When providing the Width and Height, CanDo automatically deter-
mines the Display Mode. The Amiga Display modes are Low-Resolution,
Extra Half-Bright, Hold and Modify (HAM), and High-Resolution.

Widths up to 320 can be Low-Resolution, Extra Half-Bright, or HAM.
The Display mode is determined by the number of colors. If you choose 32
colors or less you will be in Low-Resolution Mode. Choosing 64 colors
produces Extra Half-Bright Mode. Finally, 4096 colors gives you HAM Mode.

Widths greater than 320 requires High-Resolution Mode and can
have a maximum of 16 colors. Interlace is used with Heights greater than 200
(256 on PAL Amigas). On the left side of the Dimension Requester, four
common screen Sizes can be selected. Clicking on the appropriate Button
sets the Width and Height to the indicated values.

The X and Y values are the initial position of the Window. Most appli-
cation will use the default values of 0 (Zero). If the Window has a dragbar
(see Window Objects), it can be repositioned with the mouse.

The X value is only used when the Window is opened on Workbench
(See Window Options). It indicates the initial Horizontal position of the Win-
dow. The Y value indicates the initial vertical Position. If the Window is
opened on Workbench, it will be used for the vertical position of the window.
Otherwise, it will be the initial vertical position of the new screen.

Picture Window - Clicking the Picture Window Button brings up the CanDo's File
Requester. The specified Image will be used as background image for the
Window. The Window's size and number of colors will be determined by the
picture. When a Picture Window has been selected, the Picture Window
Button will be highlighted. Changing the Width or Height values, or Number
of Colors will deselect the Picture Window.

Clicking Ok or Cancel on the Dimension Requester returns to the
Window Editor.

Window Colors Clicking the Window Colors Button on the Window Editor brings up
the Color Requester. It allows you to change the color used for the Window's
Background, Border and Text. These values can be set to the Color number
you want to use.

Color Requester

Background Color
The Background Color is the initial color of the Window. If you

specify a Picture Window in the Window Dimension Requester, this value will
not be used.

Border Color
This is the color for drawing the Window's border and Title Bar. If

the Window does not have a border or Title Bar (see Window Options), this
value will not be used.

Text Color
This color is used for the Window's Title. If the Window does not

have a Title Bar, it will not be used.
Clicking Ok or Cancel will return to the Window Editor

Window Objects - Clicking the Objects Button on the Window Editor brings up the
Object Requester.

Object Requester

This Requester allows you to specify optional Window Objects.
There are, from Left to Right: Close Button, Depth Buttons, Dragbar, and
Resize Button. Click on the Buttons of your choice. The selected object will
be added to your Window.

The Close Button object allows a Close Button script to be performed
when clicked. The Depth Buttons allow the Window to be pushed to the back
or brought to the front. The Dragbar allows the Window to be dragged. The
Resize Button allows the size of the Window to be adjusted. Note: If a Resize
Script exists, the Script is performed whenever the Window is resized.

The Depth Buttons, Dragbar and Resize Button are most useful when
used with a Workbench Window. While they are not restricted to the Work-
bench Window, they are used for working with more than one Window on a
screen.

Selecting Ok or Cancel returns to the Window Editor.

Window Options - Clicking the Options Button on the Window Editor, brings up the
Window Options Requester. This Requester allows you to select various
options effecting the Window. The default Options are shown below.

Window Options Requester

Clicking a Button changes the option. Each Button toggles
between two choices. The following image shows the alternative to the
default Options.

Alternate Wlndow Options

Visible Borders
The Window has an optional border. When visible, a box is drawn

around the Window using the color specified in Window Colors. If the border
is invisible, the box is not drawn.

Backdrop Mode
A backdrop Window means the Window is attached to the screen.

The window will not have a Window Title Bar and none of the Window Objects
will be attached. If this is a Workbench Window, the window cannot be
positioned on top of other windows nor can it be moved around. When the
Window is opened on a Custom Screen, you will have access to the Screen
Title Bar allowing the Screen to be lowered using the Mouse.

Bring Window to Front
This option effects whether the window is visible when it is opened.

On a Workbench Window, the Window is allowed to be opened in front of, or
behind any Windows on the screen. On a Custom Window, it affects whether
the Screen is in front of or behind other Screens. You can use the WindowTo
and ScreenTo Commands to change the position of the Window or Screen.

Window Active
The Amiga can only have one active window at a time. This Window

receives keyboard input, and its menus are available to be used. The Window
Activate option allows you to control whether your Window is the Active
Window when it is first opened. Most of the time you will want it to be Active.
However, you may wish to make a CanDo application that is started from a
CLI and has a Status Window on Workbench. If you want to be able to con-
tinue typing in the CLI, without reactivating it, then you do not want your
CanDo Window to become Active.

Workbench Window
This option tells CanDo to try to open the Window on Workbench.

To do so, the Window must use 2 or 4 colors. In addition, if your Workbench
Screen is non-interlace, the Window height can not be greater than 200 (256
on PAL Amigas). If the Window can not be opened on Workbench, CanDo
will open a new screen.

Clicking Ok or Cancel returns to the Window Editor.

Window S<ript~ - The Window has four scripts that can be performed.
The CloseButton, Resize, Deactivate, and Activate Scripts can be edited by
clicking the appropriate Button on the Window Editor.

CloseButton
By enabling the CloseButton in Window Objects, the Window will

have a CloseButton in the upper left corner. This script is performed when
the it is clicked on.

Resize
When the Window is resized, you may need to redraw your Window.

Buttons, Fields, and Documents are redrawn automatically. However, all
other imagery is not. This script can contain commands to redraw the
imagery in the Window when it is resized.

Deactivate
When your Window is Active, and you click in any other Window, the

Deactivate Script is performed.

Activate
When a user re-activates the Window this script is performed.

The Deactivate and Activate scripts can be used to pause an activity while the
another application is being used.

Menus 'I CanDo allows you to create menus for your applications. Most likely,
you're familiar with using the menus provided in most of the software on
your Amiga. CanDo lets you create Amiga menus with the features you have
become accustomed to, and features such as Menu Images that even
professional software seldom utilizes.

Features Provided - Multiple Menu Titles.
in CanDo Menus Menu Items and Subitems.

Shortcut keys.
Stylized Text Fonts.
Menu Images.
Alternate Text and Alternate Image Highlighting

Menu Titles
Shortcut Keys

~ e n u Items I
~ e n u Sub-Items

Menu Features

Menu Components - Menu Titles are visible on the Title Bar of a window when the right
mouse button is pressed. They are text characters providing the context and
location of the available menus. CanDo allows you to have as many Menu
Titles as can be displayed on the Title Bar. When the Mouse Pointer is posi-
tioned over a Menu Title with the Right Mouse Button pressed, its Menu
Items become visible.

Each Menu Title will have at least one Menu Item. The Menu Items
are the selectable list of Text or Image entries associated with a Menu Title. A
Menu Item can have Menu SubItems. They become visible when the mouse
is positioned over the Menu Item. Like Menu Items, they can either be
represented by Text or an Image. Each Menu Item and Subitem can have a
script that is executed when it is selected. In addition, they can have a
Shortcut Key that causes its script to be executed as though it had been
selected using the mouse.

Addinq and
Chang~ng
Menus

Menus are added and edited through Requesters. Unlike Buttons
and Fields, it makes no difference whether "Add'"or "Edit" is selected in the
Objects Control Panel. When the Menu Button is selected from the Objects
Control panel, the Menu Titles Selector is displayed.

Menu Titles Selector

The Menu Titles Selector allows the creation, deletion, reordering,
and renaming of the Menu Titles. It also provides access to the Menu Items
for each Menu Title.

If you have two or more Menu Titles, the Movement Arrows allow
you to change their order. The top entry will appear at the far left side of the
Menu Bar. The bottom entry will appear on the right side.

Selecting Add or Edit brings up the Menu Title Editor. It contains
the Menu Title. The Menu Title is the text that appears on the Title Bar.

Menu Title Editor

When Edit is selected the Menu Title Editor will contain the name of
the selected Menu Title. If you want to re-name it, simply change the name in
the Field.

Selecting Cancel returns to the Menu Titles Selector. Selecting Ok
brings up the Menu Item Editor for the Menu Title.

Menu Items The Menu Items Selector works in the same manner as the Menu
Titles Selector. Menu Items are created, deleted, reordered using this
Selector. A Menu Title must have at least one Menu Item. If you don't Add
one before selecting Exit the Menu Title will not be created. Should you ever
delete all Menu Items from a Menu Title, the Title will be removed.

Choosing Edit or Add brings up the Menu Item Editor Requestor.
Add allows you to create a new Menu Item. Edit allows you to change an
existing one.

Menu ltem Editor Requester

The Menu Item Editor Requester allows you define and later modify
the features of a Menu Item. From this Requester, you specify the Object
Name, Highlighting Style, menu style, and a script to be performed when it is
selected. You can optionally define a Shortcut Key and Menu Subitems.

Menu ltem Name - As with other Objects, the Object Name here provides a unique
group of characters identifying the Menu Item. It is the name that will be
shown in the Menu Items Selector for the Menu Title.

Menu Style Menu Items can be represented by an Image or Text. The check
mark in the box next to Text" indicates it as the default style. Clicking on this
box brings up the Menu Text Definition Requester. It works the same way as
the Text Button Definition Requester. The Text field defaults to the Menu Item
Name. However, it can be altered to whatever you like.

Clicking on the Box next to "Image" brings up CanDots File
Requester. It allows you to specify the "DPaint" style Brush you want to use
as the Menu Image. Clicking the Show It Button will show you a representa-
tion of the Image on your Screen. As with all brush images, it uses the
Screen's resolution and palette.

Menu Highlight

Selected Script

Shortcut Key

With the Right Mouse Button depressed and the Mouse Pointer
positioned over a Menu Item, it will be Highlighted. The Highlighting style
is indicated in the Button below "Highlight" in the Menu Item Definition
Requester. Clicking the Highlight Button brings up the Menu Highlighting
Requester. This Requester allows you to select from the available styles.

Both Text and Image items can have highlighting styles of None,
Outline, and Complement. The Default style is Complement. These styles
work the same way as their Button Object counterparts.

Text Menus have the additional Highlight Style of Alternate Text.
Simply type the text into the field in the Alternate Text area of the Highlight
requestor. The Alternate Text uses the same font and style as the Primary
Text.

Image Menus have the additional Highlight Style of Alternate Image.
Clicking on the Alternate Image Button brings up CanDo's File Requester
allowing you to select a "DPaint" style brush file. While it is not necessary, it
is suggested that the brush be of the same dimensions as the first Image used.
If they are not, the images will not erase each other completely when high-
lighted and un-highlighted or selected and released.

A Menu Item has a single script that is performed when it is selected.
Clicking on the Selected Button in the Script area brings up the CanDo Editor
allowing you to edit the Script.

The Menu Item is selected by pressing the Right Mouse Button
and positioning the Mouse Pointer over the Item then releasing the Button.

CanDo allows you to assign a Shortcut Key to a menu item. All you
have to do is type a single character in the "Shortcut Key" Field. CanDo will
display the Shortcut Key symbol on the right side of the Menu Item. Pressing
the Right Amiga Button and the Specified Key, performs the Menu Item's
selected script as though it had been selected using the Mouse.

Menu Sub-Items A Menu Item can have a group of selectable Menu SubItems. By
depressing the Right Mouse Button while the Mouse Pointer is positioned
over the Menu Item, the Menu Sub-Items become visible. The Mouse Pointer
can then be positioned over the SubItem you want. When the Right Mouse
Button is released, the Sub-Item is Selected.

To Add or Edit an existing Menu Item's SubItems click on the Box
next to "Sub-Item". This brings up the Menu Sub-Item Selector. It works
identically to the Menu Item Selector. Selecting Add, brings up the Menu Sub-
Item Editor Requester.

Menu Sub-Item Editor Requester

It allows you to define the Menu Sub-Item. This definition process is the same
as the Menu Item Editor Requester. The only exception is that Menu Sub-
Items can not have additional Sub-Items. This is a restriction enforced by the
Arniga Operating System.

After a Menu Sub-Item is Added or Edited, clicking on Ok will return
you to the Menu Sub-Item Selector. Exiting the Menu SubItem Selector
returns to the Menu Item Editor Requester.

When a Menu Item has Menu Sub-Items, a check will appear in
the Box next to Sub-Items. If all Sub-Items are deleted, the check will be
removed.

One last thing to remember: when a Menu Item has Sub-Items,
it can not be selected; only one of its Sub-Items can be selected This means
that the Selected Script will not be performed when the mouse is released
over the Menu Item.

Fields

Field Width

A Field is an Area in which characters can be typed using the keyboard.
CanDo provides two types of fields, Text and Integer. Text Fields allow any
character, alphabetic or numeric, to be entered. Integer Fields are restricted
to positive or negative numeric (integer) values.

Click the Add Button in the Objects Panel to tell CanDo you want to add
an Object. Next, Click the Field Button, telling CanDo you want to add a
Field. When the Main Control Panel is lowered, position the Mouse Pointer
where you want the upper left corner of the Field. Click the Left Mouse
Button. Now when you move the Mouse Pointer, CanDo will display a rectan-
gular box representing the Field you are creating. Now click the Mouse
Button again. The Screen will display the Field Definition Requester.
Pressing the Esc key before you define the field area, returns to the Main
Control Panel without adding a field.

Field Definition Requester

This requester contains the Field's Name, Origin, Width, Border Style,
Justification, Type, and the available Scripts. The Name, Origin, and Border
Style work the same as in the Button Requester.

The Name is a unique identifier for this Object. The Origin values can be
altered directly with the keyboard or dynamically set using the Mouse after
clicking on the Origin Button. As with Buttons, you can set the Field's Border
by clicking on the Text Button showing the current Border Style.

The Font used within a Field is determined by a setting within your pref-
erences. Most likely, you have selected 80 column text. If so, the fields will
use Topaz 8. The characters in this Font have a height and width of 8 pixels.
If you have 60 column text selected, the fields will use Topaz 9. Its characters
have a height of 9 and width of 10 pixels.

The Field's Width is shown in pixels. The number of displayable charac-
ters is this width divided by the character width of your system font. While it
is not mandatory, it is best if the Field's Width is evenly divisible by the font's
width.
Example:
If your Field is 64 pixels wide, devide 64 by 8 (64/8) = 8

The Field's Width can be altered using the Keyboard, or resized dynami-
cally on your screen using the Mouse. Clicking on the W~dth Button, lowers
the Control Panel. The Mouse controls the width of a box representing the
Field. The left side of the box is fixed at the Origin. The right side is adjusted
with the Mouse. When the rectangle is the desired width, click the Left
Mouse Button. If you don't want to resize the width, press the Esc Key.

Type Alignment - The information in a Field can be aligned Flush Left, Centered, or Flush
Right. The Default Alignment is Flush Left. This can be altered by clicking
on the button in the Alignment Area.

Text Field The default Field type is Text. This is indicated by the check mark in the
Box next to "Text". Clicking on this Box brings up the Text Field Requester.
It allows you to define the maximum number of characters in a Field, and the
Initial Text.

Text Field Requester

The number of visible characters is determined by the field's width. The
Maximum Number Of Characters indicates the actual number of characters
the field can contain. If it is greater than the number of visible characters, the
contents will scroll as you type or use the arrow keys.

The Initial Text allows you to specify the characters in the field when it is
created. However, a user can still alter the Field's contents.

Integer Field From the Field Definition Requester, Clicking in the Box next to "Integer"
will bring up the Integer Field Requester. It allows you to specify the
Maximum, Minimum, and Initial values for the Field.

Field Scripts

Integer Field Requester

The Integer Field allows a user to type any valid integer. You can auto-
matically insure that the value is within a range by specifying the upper and
lower boundaries in the Maximum and Minimum values.

Example:
If you set the Maximum Value to 1000 and the Minimum Value is 50, and

the user enters a value of 10, when he presses Return, the value is changed to
50. If you entered 1500, it would be changed to 1000.

Using the Maximum and Minimum values, Scripts can safely assume a
value is within the defined range. It also provides the user with immediate
feed back of the value being used.

The Initial Value works similarly to the Initial Text. It provides a default
value for the Integer Field. This value can be changed by the user if he so
chooses.

Fields have two types of scripts, Selected and Return. The Selected type
of Script is executed when you click in the Field. The Return type of Script
occurs when the user presses the Return Key.

Document I
CanDo's Document Object allows you to choose between a

Memo editor and a List selector.
The Memo editor is a multi-line text editor with optional scroll bars.

It provides for free form text input and display. The No Typing option allows
for a non-editable display.

The List Selector displays a list of lines. The user of your application
can choose from this list by clicking with the mouse. File Requestors use this
technique to show a list of files.

Both the Memo editor and the List selector use CanDo Documents.
The Document commands give you flexibility in the creation and manipulation
of the Document's text. These commands are described in the Scripting
Commands section.

Docunen t Ed i tor

Stripts, , ,

r - 1 I m

Document Editor

As with other Objects, the Name should be a unique name for an
Object for the Card. The Document field indicates the "Document Name" to
be used for the Object. You should read more about "Document Name1I's in
the Document Scripting Commands. However, suffice it to say that this field
indicates which "Document Name" to associate with this Document Object.
If the "Document Name" has not already be created, CanDo will create a new
one. When this is necessary, CanDo will look for a file using the "Document
Name" as the file specification. If the file exists, it will automatically be loaded
and displayed in the Document Object. Otherwise, an empty document will
be created.

Dotument Type The Document Editor allows you to choose between Memo
and List. A check mark indicates the current selection. When you click on
the Box next to Memo, the Memo Field Options Requester is displayed.

Dotument
Definition

Memo Field Options Requester

The Memo Field Options Requestor allows you to choose between the
Scroll Bar Options. It also allows you to select the No Typing option.

Clicking the Box next to No Typing enables and disables the option.
A check mark indicates that the user of your application can not type into the
Memo editor.

The Memo Field Editor has four Scroll Bar Options from which to
choose. They are None, Horizonal Only, Vertical Only, and Horizonal &
Vertical. Clicking on the appropriate Image chooses the option. Clicking the
Box next to List does not display a Requester.

Four Buttons along the right side of the Document Editor Requester
allow you to define the Origin, Size, Font, and Border for the Document
Object.

Document Origin - Clicking the Origin Button brings up the Document Origin Requester.

Document Size

Document Origin Requestor

The Horizontal and Vertical Fields allow you to specify the location of
the Document. The Horizontal Field indicates the number of pixels from the
left edge of the window. The Vertical Field indicates the number of pixels
down from the top of the window. You can reposition the document by
clicking the Button Set Origin On Screen. Your mouse will move a rectangu-
lar box the size of your document. Position the box and click the mouse, or
press Esc to abort. The Horizontal and Vertical Fields will be updated to the
origin position.

Clicking the Size Button displays the Document Size Requester.

Document Size Requestor

The Width and Height Fields allow you to specify the document's
dimensions. These Fields show the current values. You can mod i i them
directly. In addition, clicking the Button Set Size On Screen allows you to
dynamically set them using the Mouse. The Mouse controls the comer
opposite the origin point. Adjust the size of the box and click the mouse to set
the values or press Esc to abort.

Document Font Clicking the Font Button displays the Document Font Requester.

Document Border -

Document Scripts -

Document Font Requester

The Document Font Requester allows you to choose the Font and
point size for the text to be displayed in the Document. You can also choose
between Plain and a combination of Bold, Italic, and Underlined Text. Finally,
you can choose the colors used for the text. The Color Selector on the left is
for the Text and the one on the right is for the Background.

Clicking the Border button displays the same Border Requester
used for buttons.

The Document Objects use the same Scripts as Buttons: Click, Drag,
Release, and Double. They work in the same manner. When the user first
presses the Left Mouse Button, the Click Script is performed. While they hold
the Mouse Button down and move the pionter over the document, the Drag
Script is performed. When they release the Mouse Button, the Reasease
Script is performed. And finally, if they double click on the document, the
Double Script is performed.

i i i i iB Timers I
CanDo has two types of timers: Interval and Alarm. Interval timers

go off after a length of time has elapsed. Alarm Timers go off at a specified
time of day. When a Timer goes off, the Occurred Script is performed.

The Timer Editor Requester has two forms. Some of the titles and
buttons are changed when selecting between Interval and Alarm Timer.
Interval is the default setting. It is indicated by the check mark next to
"Interval."

An Interval Timer can go off once after the elapsed time or it can be
Reoccurring. This causes it to occur repetitively after the each interval.
A Reoccurring Interval Timer, with a short elapsed time, can cause seemingly
continuous activity while allowing other Object's Scripts to be performed if
necessary.

When Interval is specified, the Timer Editor Requester allows you to
specify the time interval and whether or not the timer is re-occurring.

Timer Editor Requester

The time interval is specified in Minutes, Seconds, and J m s . Jiffys
are fractions of a second. On NTSC Amigas, the U.S. standard, J m s are
1/60th of a second. On PAL Amigas, Jiffys are 1/50th of a second. The values
can be set directly using the keyboard, or modified using the increment /
decrement buttons next to each field.

Clicking the Box next to "Reoccurring", causes the Interval Timer to
repeat continuously. For example: If the interval is set to 2 seconds, 00:02:00,
the Occurred script will be performed every 2 seconds. Clicking the Box
next to "Reoccurring" toggles it On and Off. A check in the Box indicates that
it's on.

Clicking the Box next to "Alarm" indicates the Timer should go off at
a specified time. The Alum Timer can be set to occur every day or on a
specific day of the week.

Timer Editor Requestel

The Hour, Minute, and Second Fields let you indicate the Time for
the Alarm. These times can be set using the keyboard, or they can be set
using the Buttons next to each Field. The Alarm's Day Segment can be set by
clicking the buttons AM or PM which toggle between the two.

Alarm Timers can be set for every day or for a specific day of the
week. The default setting is Every Day. By clicking the Day of the Week
Button, it cycles through each day of the week and Every Day.

The CanDo Sound Object allows you to synchronize other sounds
and graphics with a sound. The Sound Object does NOT play the sound. It
simply allow you to perform scripts when a specified sound starts or finishes
playing. While it does not play the sound, it does load it into memory, if it is
not already loaded there. When adding or editing a Sound Object, CanDo will
display the Sound Editor Requester.

Sound Editor Requester

Clicking the Button next to "Sound To Wait For" brings up CanDo's
File Requester allowing you to locate the sound associated with this object. It
must be a valid 8SVX sound. 8SVX is the IFF sound standard supported by
the Arniga.

Also on the File Requester, you can press the Hear It! Button to
preview the sound. After pressing Ok, the Sound Editor Requester will reap
pear and display the name portion in the "Sound To Wait For" Button.

The Sound Object waits for the specified sound to begin or finish
playing. Any script on the current card can play the sound using the
PlaySound or PlaySoundSequence Commands. However, they must use the
exact same file specification as the "Sound Name". If the same sound is
played using a diierent file specification or "Sound Name", the Sound Object's
scripts will not be performed.

S<ripts A sound is played using the PlaySound and PlaySoundSequence
Commands. (see the Sound Editor Tool and Sound Commands.) Whenever
the specified sounds begins to play, the Start of Sound script is performed.
When the sound is completed, the End of Sound script is performed.

Animation 1 a>f
CanDo allows you to display DPaint I11 style BrushAnims. The Ani-

mation Object does NOT display the BrushAnim. It simply allows you to
perform scripts at specific points in the animation. This lets you coordinate
other activities with the animation. Selecting the Animation Button form the
Main Control Panel, brings up the BrushAnim Editor Requester.

BrushAnim Editor Requester

An Animation Object works with a single BrushAnim. The Animation
Object's Scripts are triggered by the specified BrushAnim's activities. If you
want Scripts associated with two BrushAnims, then you need to make two
Animation Object's. Clicking on the Filename Button brings up CanDo's File
Requester allowing you to locate a DPaint I11 style Brush Animation. Clicking
the Show It! Button allows you to preview the animation.

Scripts The Scripts for the specified BrushAnim can never be performed
unless it is being displayed. The ShowBrushAnim Command can be per-
formed in any Script except for a Card's Startup Script. If you want it to be
shown when you go to a Card you should put it the AfterStartUp Script. See
BrushAnim Scripting Commands for more details.

The Animation Object allows you to perform a Script on each frame of
an animation, on specific frames, or when a moving BrushAnim reaches a
Destination.

ON Every Frame - This Script is performed before each frame of the animation is shown.
Depending on how long you make this Script, the animation may be slowed
down dramatically.

On Destination This Script is performed when the animation reaches the destination
of a MoveBrushAnim or MoveBrushAnimTo Command.

BrushAnim Individual Scripts can be performed before specific frames are shown.

Frames... The List Requester shows the frame numbers for which there is a Script. The
Buttons on the right hand side allow you to Add, Edit, and Delete Scripts from
the list. Clicking Add displays the BrushAnim Frame Requester.

Brushhim Frame Requester

It has a Slider allowing you to quickly choose the Frame Number.
The selected Frame is shown in the Frame Field. You can also enter the
Frame directly into the Field. If you click Ok, the CanDo Script Editor will be
displayed. When you finish creating the Script, the B m h Anim Editor will be
re-displayed.

CanDo provides a way of performing a Script when a diskette is
removed from or inserted into the disk drive. This can be a fun way of playing
different sounds when disks are removed and inserted. While it is not usually
necessary, your application can monitor the available volumes. The Disk
Object provides a way of performing these tasks.

Disk Object Editor

The Disk Object has two Scripts. Disk Removed and Disk Inserted.
The scripts are performed whenever a diskette is removed or inserted from
any drive.

a Routines 1 Routines allow you to write a Script that can be performed by any
Object. When creating the Routine, you give it a Name. The Script is per-
formed using the Do Command with this name (see documentation on the Do
Command for more details).

Unlike other Objects, the Routines Object is global to all Cards. This
means that a Routine is accessible from every Card in your Deck.

Routines keep you from having identical Scripts in different Objects.
When you want multiple Objects to do the same thing, simply put the common
scripting commands in a Routine. You can then access the Routine from any
Object's Script using the Do Command.

Routine Editor

The Routine Editor has a field for the Routine's Name. The Do
Command uses this Name to access the Script. When using the Do Com-
mand, put the Name in double "the name" quotes.

The Script Button allows you write the Routine's Script. The Script
can contain Do Commands. While it is valid for a Routine to Do itself, you
should not try this unless you are familiar with the advanced programming
techniques. It is very easy to create an endless loop that uses all remaining
memory.

ARexx
Your application can listen to one ARexx port at a time. This port is

specified using the ListenTo Command (see ARexx Commands for more infor-
mation). Other Applications can send messages to this port. A message is
simply an ASCII string. The first word of the message is the Command Word.
When a message is received, CanDo uses the Command Word to see if you
have ARexx Object that corresponds to it. If there is one, its Occurred Script
is performed. Clicking the ARexx Button on the Main Control Panel, brings
up the ARm Editor Requester.

ARexx Editor Requester

The Object's Name Field is initially empty. If you do not fill it in, it
will automatically be set to the word you put in Message Field when you press
the Ok Button.

The Message Field should contain a single word identifying the
message's Command Word. When a message is received, and its Command
Word matches the word you put in this Field, the Occurred Script is per-
formed. The script can then use the System Variable TheMessage which
contains the complete text of the message just received.

By making a series of ARexx objects, one for each Command Word
that can be performed by your application, you can very easily create a
complete ARexx server.

The Objects portion of the Main Control Panel contains the core
group of Objects supported by CanDo. As more Objects are added, they will
be accessible through the Xtra's Button.

In addition to Objects, the Xtras give you access to expanded opera-
tions. These Operations can also be accessed through the Xtra's Button.

Each CanDo Xtra has a file in the Xtras directory. As additional Xtras
become available, you simply put its file in the Xtras directory. Because the
Xtra Objects and operations are not individually documented in this manual.
there will be documentation files on the disk.

Pressing the Xtra button on the Main Control Panel brings up the
Xtras Selector.

Xmas Selector

This Selector contains a list of the available Xtras. Simply Double
Click an entry or click the Perform Button. When you do so, the selected
operation will be performed. You should make sure you are familiar with what
the Xtra is going to do by reading its documentation.

Script Editor
Index

Script Editor 5 - 1

Editor Tools 5 - 4

Paint Editor Tool 5 - 5

Text Editor Tool 5 - 8

Sound Editor Tool 5 - 9

Picture Editor Tool 5 - 1 0

DOS Editor Tool 5 - 11

File Editor Tool 5 - 11

Coordinates Editor Tool 5 - 1 1

Card Finder Editor Tool 5 - 12

Routine Editor Tool 5 - 12

Field Editor Tool 5 - 13

ARexx Editor Tool 5 - 15

Script I -

Menus

Script Menu

Every Object has at least one Script that can be performed. By
clicking a button on the Object's Editor Requester, you can edit the Script
using CanDo's Script Editor. The Script contains Commands telling CanDo
what you want to happen when the Script is performed. CanDo's Scripting
Commands are described in Chapter 6.

This Chapter describes how to use the Script Editor and
Editor Tools.

CanDo Script Editor

The Script Editor works like most text editors. Using the keyboard
and cursor keys you can type in your script. The vertical Slider on the right
lets you scroll through a script.

The Editor has four Menus: Script, Text, Edit, and Misc. Some of
their Menu Items have Shortcut Keys. These Menu functions can be invoked
using the Right Amiga Key.

The Script Menu contains: Ok, Cancel, Verify, Clear, and Print.

Ok verifies the script and returns to the CanDo requester from which
you invoked the Script Editor. If the script contains an Syntax Error, a
requester will indicate nature of the error. When you select Continue, the
cursor will be placed at the beginning of the problem line.

Cancel
Cancel returns to the previous requester without including any

changes made to the script.

V e w
Verify checks the syntax of the script. Although this is done auto-

matically when you select OK, this option allows you to verify the script
without leaving the Scripting Editor. If an error is detected, a requester will
indicate the error and your cursor will be move to the beginning of the line
containing the error.

Clear
Clear erases all lines in the Script Editor. Should you inadvertently

clear a script, select Cancel and re-invoke the &ript Editor.

Print
Print sends the entire contents of the Script Editor to the Printer.

Text Menu The Text Menu allows you to Load, Save, and Insert text.

Load
Load replaces the contents of the Script Editor with the contents of a

File. CanDo's File Requester allows you to locate the file.

Save
Save writes the contents of the Script Editor to a file specified with

CanDo's File Requester. If the File currently exists, it will be replaced.

Insert
Insert takes the contents of a file, specified with CanDo's File Re-

quester, and inserts it into the Script at the current cursor position. Unlike
Load, it does not first clear the existing script.

Edit Menu The Edit Menu allows you to Search For and Replace text
in the Script.

Search
Search ... searches for the next occurrence of a text string. A re-

quester allows you to specify the string to search for.

Search Next
Search Next searches for the next occurrence of the last text string

specified with Search ...
Replace

Replace ... searches for the next occurrence of a text string and
replaces it with another. A requester allows you to specify the Search string
and the Replace String.

Replace Next
Replace Next repeats the last Replace ... operation without bringing up

the Search/Replace Requester.

Replace All
Replace All replaces all occurrences of a text string with another.

Mist. Menu The Misc. Menu contains: Help, Delete Line, Delete to EOL, and
Undelete Line.

Help
Help brings up the Scripting Help Requester. This Requester is

described later in this Chapter.

Delete fine
Delete Line erases the current line. It can be restored using Un-

delete Line.

Delete to EOL
Delete to EOL erases all characters from the current cursor position

to the end of the line. The characters can be restored using Undelete Line.

Undelete Line
Undelete Line restores the characters erased by the last Delete Line

and Delete to EOL.
5 - 2

Shortcut Buttons -

Scripting Help

Six of the Menu Items have a shortcut button located at the top of the
Scripting Editor: Ok, Cancel, Search ..., ... Next, Replace ..., and Help. These
buttons work the same way as their menu counterparts.

You can get help on CanDo's Scripting Commands, Functions and
System Variables through the Scripting Help Requester. It is invoked by
selecting the Help Menu Item under Misc., by clicking the Help button, or
double clicking a word in your script. CanDo will try to give you help for the
word under the cursor or for the first word on the line.

Scripting Help Requester

The main area of the requester displays the help message. When
there is more information than can be displayed in the message area, you can
use the Next Page button to move forward. The Prev Page Button can then
allow you to move backwards.

Some of the words in the message area can be clicked on for addi-
tional help. You can identify these words because they will be in Red. By
clicking on a Red Word, a related help topic will be shown in place of the one
which you are currently reviewing. When you want to return to the previous
help topic, press the Back button. If you have moved several levels from your
original Help Message, you can return to the first one by pressing the Top
button.

The Topics, Commands, Functions, and Variables Buttons allow you
to look up other Help Messages. By pressing one of these Buttons, the list on
the right will contain a selection to choose from.

Pressing the Topics button displays a list of Topics such as Graphics
and Card Movement. When you select one of the listed Topics, the lister will
then display all of the Commands for the Topic and the Commands Button
will be highlighted. Clicking on one of the Entries in the list, displays its Help
Message.

By clicking the Functions Button, the list will display the Functions
for the Topic. Clicking the Variables Button shows the System Variables.

When you are ready to return to the Script Editor,
press the Exit Button.

Editor Tools
Along the right side of the Script Editor is a selection of Editor Tools.

These Tools allow you to interactively create scripts.
For beginners, this is an easy way to get started without spending too

much time learning Scripting Commands. In fact, using the Editor Tools can
be the easiest way to learn. By using them to create your own "examples",
you can learn both specific Commands and the way CanDo's Scripting
Commands work in general.

Advanced Users can create a "rough" script performing some of the
tasks they want to accomplish. By changing a few constants to variables, and
adding a loop, or other such modifications, it can be very easy to create
sophisticated scripts.

Some Tools make it easy to access things that CanDo "knows" about.
Card, Routine, and File Names, to name a few, are more easily and accurately
identified using Editor Tools. Other Tools simply let you see the results
before you try it out.

When you click on one of the Icons, a specialized requester will help
you in creating your script. Feel free to just play around with the Tools.
However, you should be familiar with CanDo's ARexx capabilities before
exploring the ARexx Editor Tool.

Paint 1 Editor
Tool

The Paint Editor Tool works like a small paint program. By using its
Tools, you can draw in the window and it will create the necessary Scripting
Commands. By selecting the Paint Editor Tool Icon, CanDo will display the
Editor Tool Panel. At the very bottom a color bar will display the current color
palette. The Paint Editor Tool is designed to look and feel like a simple
painting package. You simply select a drawing Tool, a color to use, and draw
in your window.

Dotted Freehand Cancel

Area Area
Rectangle Ellipse

Area Draw
Parallelogram w / Brush

Area Multi-Mode
Triangle

Fill Undo
Continuous Ok.
Freehand

While it may seem like a paint program, you need to be aware that
you are creating a Script. Each action you take generates Scripting Com-
mands. It is very easy to create large Scripts using this Tool.

Dotted and Continuous
Freehand Drawing

Line

Flood Fill

Trian Ie and
Area f riangle

Parallelogram and -
Area Parallelogram

Rectangle and
Area Rectangle

Circle and
Area Circle

Ellipse and
Area Ellipse

These Tools allow you to draw in a series of dots or small connected
lines. Simply select a color and draw using the Left Mouse Button. You
should keep in mind that these Tools can easily create large Scripts.

The Line Tool allows you to draw a line in the window. Simply
position the mouse pointer, press and hold the Left Mouse Button, move the
mouse pointer and release the Mouse Button. A line will be draw between the
two points.

The Flood Fill Tool allows you to fill an enclosed area with the
selected color. Position the mouse pointer on your window and click the
Left Mouse Button.

These Tools allow you to draw triangles. The Triangle Tool draws
with lines, and the Area Triangle Tool draws filled Triangles. Simply define
one side of the triangle in the same manner as drawing a line. When you
release the mouse Button, the pointer will control the position of the third
vertex. Position the pointer and click the Left Mouse Button.

These Tools allow you to draw parallelograms, a four sided polygon
with parallel lines. The Parallelogram Tool draws with lines, and the Area
Parallelogram Tool draws with a solid color. Draw a line by positioning the
mouse pointer at the first vertex, press and hold the Left Mouse Button, and
drag the mouse pointer to the second vertex and release the Mouse Button.
The Mouse pointer will now control the three remaining sides. As you move
the pointer, a parallelogram will be formed. When you press the mouse
Button again, the final image will be displayed.

These Tools allow you to draw a rectangle with lines or a filled block.
Position the Mouse pointer, press and hold the Left Mouse Button to define
one of the comers. While holding down the Mouse Button, drag the pointer
to the opposite comer and release the Mouse Button.

Using these Tools, you can draw filled or unfilled circles. These
Tools do not automatically adjust the radius for all screen dimensions.
However, you can use the ellipse Tool for these situations.

Position the mouse pointer then press and hold the Left Mouse
Button. This defines the center of the circle. While holding down the Mouse
Button, drag the pointer to define the size of the circle and release the
Mouse Button.

These Tools allow you to draw filled or unfilled ellipses using the
currently selected color. Position the Mouse pointer and press the Left
Mouse Button. This defines the center of the ellipse. While holding the
mouse Button down, drag the pointer to define the size and shape of the
ellipse and release the Mouse Button.
Brush Clip

This Tool copies a rectangular area of the current window so it can be
used by the Draw with Brush Tool. Simply position the mouse pointer to one
of the comers and press the Left Mouse Button. While holding down the left
mouse Button, drag the pointer to the opposite comer and release the mouse
Button. The Draw with Brush Tool will automatically be selected.

Draw with Brush -

Draw-Mode

Mul timMode

Clear

Undo

This Tool draws with a clipped brush created using the Brush Clip
Tool. CanDo will not allow you to select this Tool if you have not previously
clipped a brush. When this Tool is selected, you will see the clipped image as
you move the mouse pointer. Simply position the image and click the Left
Mouse Button.

The Draw-Mode Button toggles between Normal and Complement.

Complement

While in Normal Mode, the drawing Tools will draw using the
currently selected color. While in Complement Mode, the drawing Tools will
complement the colors over which they are drawing. The advantage of
Complement Mode is that when the Script is repeated, the drawing will Com-
plement back to what it was.

The Multi-Mode Button toggles on and off. When it is off, drawing
Tools will draw a single image. When it is on, the Line, Triangle, Parallelo-
gram, Rectangle, Circle, and Ellipse Tools will draw multiple images.

The Clear Button clears the window. Remember, this places a
Clearwindow Command in the Script, and is not the same thiig as starting
over.

The Undo Button will undo previous operations. Each time you press
the Undo Button, the last operation will be forgotten, and all remaining
operations will be re-displayed. This can be repeated until all operations have
been forgotten. This provides the unique feature of unlimited undo's. How-
ever, you need to keep in mind that you are removing Scripting Commands.

Sde<ting a Color - The Color Selector displays the current drawing color. You can use
the up and down arrows to step through the available colors, or simply click
on the color in the Color Bar. The Palette Sliders allow you to change a
color.

Red Green Blue Color Selector

Remember, changing a color generates a Scripting Command. It
does not change the initial Palette. Rather, it changes the color when this
Script is performed. NOTE: You should avoid changing the colors in a
Workbench window.

The Text Editor Tool helps you print text in your window. When you
selecttheText Editor Tool Icon, the Text Editor Tool Requesterwill be displayed.

Selecting the Set Text and Font... Button brings up the Text and Font
Requester.

elp ne p r i n t some text 1

Text and Font Requester.

This requester works in an identical fashion to the Text Button Definition
Requester described on Page 4 - 10.

After setting the Text and Font, click the Set Position... Button. This
will allow you to position a representation of the text using the mouse. Click the
Left Mouse Button when it is positioned where you want it to be.

Sound
Editor
Tool

The Sound Editor Tool helps you play sounds. CanDo supports the
playing of 8SVX digitized sound Files, the standard supported by the Arniga.
This Tool helps you select a sound, volume and audio channel.

Selecting the Sound Editor Tool Icon brings up the Sound Editor
Tool Requester.

Sound Editor Tool Requester.

This Requester allows you to choose from three options: selecting a
sound File, changing the volume, and selecting an audio channel. You can
choose one or more of these options. CanDo will produce the Scripting
Commands for the options you choose. For example, you can select a sound
File and a channel and not choose a volume.

Clicking the Set the filename... Button brings up CanDo's File
Requester. You can use it to locate the sound you want to play. When you
select Ok, CanDo verifies the File is an 8SVX digitized sound, and returns you
to the Sound Editor Tool Requester.

Selecting the Set the volume... Button brings up the
Set Volume Requester.

1 sag

 anm mil I f lu*FI a 1 i
Set Volume Requester.

This Requester has a slider and a field you can use for selecting the
volume level. The slider is scaled from 0% to 100%. As you move the slider,
the value in the Volume Field will show the equivalent volume setting. This
value ranges from 0 to 64. You can also set this value using the keyboard.
When you select Ok, the Sound Editor Tool Requester is re-displayed.

NOTE: When you change the volume setting, all subsequent sounds
will be played at the selected volume.

Tool

Selecting the Set the channel... Button from the Sound Editor Tool
Requester brings up the Set Channel Requester.

Set Channel Requester.

This Requester allows you to specify a specific audio channel on
which to play a sound. If you do not select a channel, the sound will play on
the next available sound channel. By choosing a specific audio channel, you
can control which speaker the sound is played on. Audio channels 0 and 3 are
played on the left side, and channels 1 and 2 are played on the right side.
However, if the specified audio channel is being used when the Script is
performed, the sound will not be played.

When you select one of the four Buttons, it will become highlighted.
When you select Ok from the Set Channel Requester, you will return to the
Sound Editor Tool Requester.

Remember, whenever you are using the Sound Editor Tool Requester,
you can select Ok and CanDo will return you to the Sc@t Editor. CanDo will
produce the Scripting Commands for the options you have selected up to that
point.

The Picture Editor Tool helps you locate a Picture and creates the
Command to show it. When you select the Picture Editor Tool Icon,
CanDo's File Requester will allow you to find the picture file. When you select
Ok, CanDo will create the Command to show the picture.

The DOS Editor Tool helps you Run another program. When you
select the DOS Editor Tool Icon, CanDo's File Requester will appear. Locate DOS

Editor
Tool

the program you want to run, and press Ok. CanDo will verify it is an execut-
able program.

This Tool creates a Dos Command. It simply tells the Arniga Operat-
ing System to execute the program within the quotes. The Editor Tool puts
the word "c:Run" in front of the program you selected.
For example:

Dos %:Run c:dir"
This allows your CanDo application to continue running after it starts

the selected program. If you want your CanDo application to wait until the
selected program is done, you can remove the word "c:Run9' from the com-
mand.

Dos "c:dir"
Some programs allow parameters to be passed on the command line.

You can do this by adding them after the selected program.
Dos "c:dir >ram:WorkFileW
This final example would execute the Dir command in the c: direc-

tory. It does not have a "Run". Therefore, your CanDo application will wait
until the command has completed before continuing. Finally, it tells the Dir
command to save its output in a file called "ram:Workfile9'.

The File Editor Tool helps you to locate a file using CanDo's File
Requester. It does not create a complete Scripting Command. It simply

Editor returns the file specification enclosed in double quotes. Many of CanDo's
Commands use a file specification in this form. This way, you can use the File
Editor Tool to locate the file for one of these Commands.

Coords.
Editor
Tool .*

The Coordinates Editor Tool allows you to find the x,y coordinates of
a location on your Window. When you select the Coordinates Editor Tool
Icon, you should move the cross-hairs to the location you want and press the
Left Mouse Button.

This Editor Tool does not create a complete Scripting Command. It
simply returns the horizontal and vertical values for a single location. Many of
CanDo's Scripting Commands use these x,y values. You can use this Editor
Tool for finding the x,y coordinates for one of these Commands.

Card
Finder
Tool

The Card Finder Editor Tool helps you with Card Movement
vommands. Selecting its Icon displays the Card Finder Requester.

Routine I I' Editor

Card Finder Requester.

This Requester has Buttons on the left side for each of the options,
and a list of all Card Names on the right side. This list works in conjunction
with the first two options, inserting the Card Name and inserting a "Goto." By
clicking on one of the entries, the Name is placed in the Card Name Field.

After selecting a Card Name, pressing the Insert the Name of this
Card Button returns you to the Editor. The selected Name will be typed into
your Script.

Selecting the Insert a "Goto" to this Card Button, will insert the
necessary GotoCard instruction and return you to the Editor.

Selecting one of the four Buttons at the bottom, First, Previous,
Next, and Last, inserts a single Scripting Command. These Commands do
not use the selected Card Name.

The Routine Editor Tool displays a list of all the Routine names and
allows you to insert the Name or a "Do" Command for the Routine. When you
select the Routine Editor Tool Icon, CanDo will display the Routine Finder
Requester.

[he Routine Finder

Routine Finder Requester

The Routine Finder Requester displays a list of all currently defined
Routines in a list on the right side of the Requester. By clicking on one of the
entries, its Name will be placed in the Routine Name Field.

When you select the Insert the Name of this Routine Button,
CanDo will put the Routine Name, enclosed in quotes, into your Script.

When you select the Insert a "Do" to this Routine Button, CanDo
will put a Do Command into your Script.

The Field Editor Tool helps you with the Field Object. The Field
Object allows the user of your application to enter or otherwise edit a single
line of text or an integer number. You can set or retrieve the contents of a
Field using Scripting Commands. This Editor Tool assists you in doing this.

Selecting the Field Editor Tool Icon displays the Field Editor
Tool Requester.

Seletting a Name -

Insert Field's Name -

Field Editor Tool Requester.

This Requester displays the Object Name for all Fields on the current
card and gives you three Scripting options. You can simply insert the Object's
Name, set the contents of the Field, or retrieve the contents of the Field.

Each Field is given a Name on the Field Editor Requester. The
Names for all Field Objects are displayed in the list on the right side of the
Field Editor Tool Requester. By clicking an entry, the Name will be put into
the Field Name Field. You should select an entry by clicking one of the
three Scripting options.

Clicking the Insert the Name of this Field Button automatically
types the selected Object Name with double quotes on each side. This is a
simple way of finding a Field Name and using it with a Scripting Command.
This option does not produce a complete Scripting Command.

Set Field's Contents - Clicking the Set this field's contents to... Button displays the Set
Field Requester.

Set Field Requester.

The New Value Field allows you to type in a value to be put in the
selected Field. If the selected Field is an Integer Field, you will be limited to
entering a valid integer value. Otherwise, you can enter any characters you
wish. Remember, if you want to include any double quotes, you should put
two in a row (""). Selecting Ok creates the necessary Scripting Command
and returns you to the Editor.

Get a Fields Selecting the Put this field's contents into... Button displays the
Contents Get Field Requester.

Get Field Requester.

This Requester aids you in retrieving the contents of a Field and
putting the value into a variable. You need to provide the Variable Name in
the provided Field. Clicking Ok creates the necessary Scripting Command
and returns you to the Field Editor Tool.

The ARexx Editor Tool helps you send and receive ARexx messages.
H you are interestqd in doing this, it is recommended that you read both the
ARexx Object and ARexx Commands sections before doing so. While this
Editor Tool makes it easier to produce the ARexx Commands, you should first
familiarize yourself with the ARexx concepts.

Before sending ARexx messages to an application, acquaint yourself
with its ARexx capabilities. It should have documentation for its ARexx Port
Name and the Commands it can receive.

After selecting the ARexx Editor Tool Icon, CanDo will display the
ARen Editor Tool Requester.

ARexx Editor Tool Requester

From this Requester you can select a Message Port to listen to or
speak to, or send an ARexx Message to the current SpeakTo Port.

ListenTo Selecting the Select a Message Port to listen to... Button, displays
the ListenTo Requester.

t o , , ,

,,.ad h a t ' s i t 's we

ListenTo Requester.

This Requester allows you to specify the ARexx Port Name that your
application uses to receive ARexx messages. It is recommended that you put
this in the Startup Script of your first Card. Selecting the Insert the
"IistenTo" Button inserts the Command and returns you to the Editor.

Spea kT0 Selecting the Select a message Port to speak to... Button from
the ARen Editor Tool Requester displays the SpeakTo Selector.

SpeakTo Selector.

The SpeakTo Selector displays all of the Public Message Ports. While
an ARexx Port is Public, not all Public Ports can receive ARexx messages. In
fact, sending a message to some ports will cause the Arniga to crash. You
should know the Name of the Port to which you wish to send a message. This
Selector simply makes it easier for you to find the Name and insure that it is
currently available.

Clicking an entry selects the Name and puts it into the Port Field.
Selecting the Insert the "SpeakTo" Button or double clicking an entry
inserts the Command and returns to the Editor.

Send Message Selecting the Send an ARexx message Button from the ARexx
Editor Tool Requester displays the Send ARen Message Requester.

end a ARexx Message, , ,

Send ARexx Message Requester.

This requester allows you to send a message to the current SpeakTo
Port. Simply enter the message and click the Insert the "Message" Button.
This will insert the SendMessage Command and return you to the Editor.

I

Commands
Index

Commands Overview 6 - 1

Expressions 6 - 3

Functions 6 - 10

FlowControl Commands 6 - 18

CardMovement Commands 6 - 2 3

Graphic Commands 6 - 24

Screen and Window Commands 6 - 35

Brush Animation Commands 6 - 38

Audio Scripting Commands 6 - 42

Document Commands 6 - 4 5

File I/O Commands 6 - 5 3

Icon Commands 6 - 55

ARexx Commands 6 - 58

Object Commands 6 - 6 0

Buffer Commands 6 - 62

Misc Commands 6 - 66

Commands

1 CanDo has over 200 scripting Commands and Functions. However,
you shouldn't feel as though you need to know how to use all of them in order
to make your application. In fact, you really only need to know a few to get
started.

You should use the Editor Tools to get your feet wet. By looking at
the Commands they produce, you can learn a great deal about the way the
Commands work.

At first you will want to use this Chapter as a reference for the Com-
mands you encounter. As your needs grow, you will want to read about a
certain classes of Commands. This Chapter is organized for this purpose.
Each section describes certain aspects or classes of Commands.

While you do not initially have to understand Expressions and Func-
tions, you should eventually read the first two sections of this Chapter. By
making use of Expressions and Functions, you can easily add a lot of sophisti-
cation to a simple application.

The Flowcontrol and CardMovement Commands are very powerful.
They allow you change what is happening in your application. The CardMove-
ment Commands, in particular, are very simple and you should learn to use
them early on.

The Graphic, Screen and Window, Animation, and Audio Commands
are the spice you use in your CanDo applications. However, these comprise
the majority of the Commands and they may take little while to master. Keep
in mind that you don't have to learn to use everything. If something seems
complicated, come back to it later.

The Document Commands are unique. You can use them with the
Document Objects or for internal manipulation of text. These Commands
bring an additional level of power to the manipulation text. Depending on
your needs, you may not want to work with these initially.

File I/O, Icons, ARexx, Object and Buffer Commands should be con-
sidered advanced. Power users can use these Commands to make applica-
tions that rival professional software.

Finally, Misc. Commands rounds off a few Commands that you may
find useful in your application.

Command Symbols - There are several symbols used in describing the various Commands
and Functions.

c > are used to indicate Integers. *
u n are used for Strings *
e B are used for Logicals. *
{ 1 are used to show optional parameters are Optional

, a Comma separates parameters

; a Semi-colon can be used to add Comments to the
end of a Command line.

KEYWORDS are always shown in all capital letters.

* You should read the Expression System section for an explanation
of Integers, Strings and Logicals.

Expressions u An expression is a group of constants, variables, and functions
combined with operators. You use expressions to tell CanDo's scripting
commands what to do.

Most of the time, you will use constants such as 5, "Hello", and ON.
However, sometimes you will want to do more sophisticated operations.
Expressions allow you to describe a value that is determined at the time the
command is performed.

CanDo's expression system has been designed to be as intuitive as
possible. Numbers are represented as integer constants. Strings are con-
tained in double "quotes". And logical values use names such as ON, OFF,
YES, NO, TRUE, and FALSE. In addition, you can mix integer, string, and
logical values within expressions, and CanDo will automatically convert the
values as needed.

This section describes the details of CanDo's expression system.
While it is not necessary for you to understand all aspects of this system,
CanDo provides many sophisticated operations and functions. Depending
upon your experience level, you may want to use this as a reference section or
you may want to read it for a complete understanding of CanDo's expression
system. Either way, you should at least scan it to get a grasp of its principles
and abilities.

Most of CanDo's scripting commands use expressions to provide the
information for the operation. For example, the LET command saves a value
in a variable. The format for the LET command is:
LET VariableName = expression.
The results from evaluating the expression is saved in the indicated variable.

Examples:
Let X = 100

In this example, 100 is a simple expression containing a
single integer constant. It is saved in the variable X'.

L e t Y = X * - 2
The expression in this example is X * -2'. The result, -200, is

assigned to the variable Y'.

Let Z = 5 + Absolute (Y + 10)
This expression uses the ABSOLUTE function. A function

takes one or more parameters within parenthesis, performs an
operation, and returns a single value. Each parameter withina
function can be an expression. The parameter for the ABSOLUTE
function, in this example, is the expression Y + 10'. As you might
expect, the ABSOLUTE function returns the absolute value of an
expression. The absolute value of the expression '-200 + 10' is 190.
'2' is assigned the value of '5 + 190', or 195.

An Expression is a combination of constants, variables, and functions
with operators for computation. The evaluation of an expression results in a
single value.

Within CanDo, expressions use three types of values: Integers,
Strings and Logicals.

Integers Integers are the basic numeric system for dealing with graphics and
computer control. Integers are whole numbers that range from -2147483648
to 2147483647.

An integer constant is a series of digits. A minus sign preceding the
digits indicates a negative integer. A plus sign is not necessary to indicate a
positive integer. However, it can be used to provide clarity.

Examples:
105 -5000 +6

Strings

Logicals

Strings are groups of characters. String constants are characters
contained within double quotes. For example: "Fred is Here". However, the
double quotes are not part of the string. They simply show where the string
begins and ends.

Strings can be as large as available memory will allow. Or a string can
be empty. An empty string is often referred to as a null string. CanDo recog-
nizes a null string as two double quote marks "".

Strings can contain any character. These include many that are not
visible or are considered part of the International character set.

For a string to contain a double quote, it must be typed twice within
the string. CanDo will treat it as though only one is contained in the string.
For example "Fred says ""Hi"" to everyone." contains the word "Hi" within the
string.

Logicals (known as Booleans) simply mean true or false. The words
TRUE and FALSE are logical constants. Within CanDo, YES and ON also
mean TRUE. Similarly, NO and OFF mean FALSE.

Variables A variable is a name to be used in the place of an integer, string, or
logical constant value. Variables can be thought of as storage locations for
values. CanDo does not require you to 'declare' a variable.

Variable names may contain letters, digits, and underscore characters
(-). The name must begin with a letter. The names can be any length.
However, longer names use more memory and take longer to identify.

Any variable name can be used for integers, strings, or logicals.

LET

Expressions

VariableNarne = expression

The Let command allows you to save a value in a variable. CanDo
evaluates the expression and then saves the value in the variable. This value
will be used in the evaluation of expressions containing the variable.

CanDo also provides system variables and functions such as
'MouseX' and 'Sign (expr)'. With the exception of these variables and
functions, any variable name can be used.

An expression contains constants, variables, and functions that can be
combined with operators to form a new value.

An example of a simple expression is 'Count + 5'. The first value,
'Count', is a variable. The second value, '5' is an integer constant. The '+'
represents the addition operator. This expression adds the contents of the
variable 'Count' with 5.

Constants, variables, and functions can be used interchangeably as
values within an expression.

An operator is a symbol that represents a process to be performed on
one or two values.

CanDo allows any type of value to be used with any operator. Strings,
integers, and logicals can be used interchangeably with any operation. Each
is automatically converted to the type of data used by the operator.

Examples:
"-1000" + 5

The addition operator (+) adds two integer values. The first
value, "-1000" is a string. It is automatically converted to an integer
value of -1000 and is added to 5. The result of this expression is -995.

"-1000" 1 1 5
The string concatenation operator (I I) appends two strings

together. The first value in the expression is a string "-1000". How
ever, the second value is an integer constant 5. It is converted to a
string constant of "5" and appended to "-1000" the result of this
expression is "- 10005".

The default value for an unassigned variable is either an integer
ZERO (0), a string NULL ("") or a logical FALSE. The default value used is
determined by the type of operation being performed. For example, Repeat-
Count will have default value of ZERO for the expression (5 + Repeat-
Count).

The automatic conversion makes it easier to work with different
kinds of data. It isn't necessary to keep track of different variable types or to
use conversion functions. Most of the time, different data types can be used
interchangeably without special consideration. The automatic conversion is
described in the following sections so that predictable results can easily be
achieved.

Order of Each operator has a "priority" that determines the order of computa-
Evaluation tion. For example, multiplication is performed before addition. The priority

scale ranges from 1 to 8, where operations with a priority of 8 are performed
first and operations with a priority of 1 are last.

The priorities cause expressions to be evaluated in the standard
order of algebraic rules. Operators with the highest priorities are evaluated
first, followed by the next lower priority. Operators with the same priority are
evaluated from left to right. Operations within parenthesis are evaluated
before ones outside. All expressions allow the usage of parenthesis to change
the order of evaluation or to clarify the intended usage.

Wumeric These operators provide the basic arithmetic functions. They operate

Oprat ion~ on integer values. If a value is a string or logical, it is converted into an
integer.

Number of
Operation Values Priority Symbol

Unary Minus 1
Unary Plus 1
Multiply 2
Divide 2
Modulo 2
Addition 2
Subtract 2

/ o r %
MOD or //
+

Unary operator^ - As in algebra, + and - can be used to indicate positive or negative
numbers. A unary operator can precede a single value. The value can be a
constant, a variable or an expression within parentheses. Unary operators
have the highest priority.

Examples:
- 8 + 56 - Count

Multi ly, Divide, -
Modu f 0, Add, and
Subtract Operators

These operations perform the basic algebraic operations.
The modulo operation returns the remainder of an integer divide.

Both the symbol // or the word MOD can be used.

Expression Result

Note: Currently you can use either / or % for Division. Future releases
will use / for Floating Point Division amd % for Integer Division. Your current
scripts will be fully cornpatable with future versions if you use the % operator.

String to Integer - If the first characters within the string represents an integer, the
C O N V ~ ~ S ~ O N automatic conversion will recognize the value. Otherwise, an integer value of

ZERO will be used.

String Result

"104"
"14 Times"
"Five"
''- 86''

" -5 "
"Jacks"

Logical to htcbger - Logicals are either TRUE or FALSE. TRUE converts to 1. FALSE
Conversion converts to O.

Logical Result

TRUE
FALSE
ON
OFF
YES
NO
(5 = 6)
(5 < = 6)

String
Concatenation
Operations

The string concatenation operators append two strings together. The
concatenate including space operator (1 1 1) appends the two strings with a
space between them.

Number of
Operation Values Priority Symbol

Concatenate 2
Concatenate including Space 2

Expression Result

Integer to String -
Conversion

Logical to String -

If the value for a string operation is an integer, it will be converted to
a string. The string equivalent will not contain leading spaces or zeros. If the
integer is negative, it will contain a leading minus sign ("-").

Expression Result

"Score: " 1 1 250 "Score: 250"
"Ending Value: " 1 1 1 (15 - 25) "Ending Value: - 10"

If a logical value is used in a string operation, it will be converted to
either "TRUE or "FALSE".

Expression Result

"Value > 100 : " 1 1 1 (Value > 100) "Value > 100 : TRUE
TRUEIIIFALSEIIIYESIIINO "TRUEFALSETRUEFALSE"

Relational Relational operators compare two values to each other. These
operations work with both integer and string values. The result of a relational
comparison is a logical value.

Number of
Operation Values Priority Symbol

LessThan 2 3 <
GreaterThan 2 3 >
LessThan or Equal 2 3 < = =

GreaterThan or Equal 2 3 > = = >
NotEqual 2 3 < > > < -
Equal 2 3 - - - . - - - - -

If both values are integers, they are compared in the usual way.
However, if either of the values are not integers, then both values are con-
verted to strings.

The results of string comparisons are similar to the way a
dictionary is ordered. However, upper and lower case letters are not the
same. The order of the letters are based on the ASCII character set.
(see ASCII appendix)

Expression Result

7 + 2 < 6 FALSE
5 - 7 = = - (1 2 / 6) TRUE
"Five" < > "FIVE" TRUE
“- 15" = 5 * - 3 TRUE (string comparison)

Boolean Boolean operators work with logical values. Often they are used with
Operations the results from relational comparisons.

Number of
Operation Values Priority Symbol

NOT 1 8 NOT -
And 2 2 AND &
Or 2 1 OR I
Xor 2 1 XOR &&

The OR operation is used to determine if either of two conditions is
TRUE. The AND operation determines if BOTH conditions are TRUE. The
XOR is used to ascertain when one of the values is TRUE but not BOTH.

The NOT operation is similar to the unary minus. The unary minus
changes the sign of a value. The NOT operation changes a TRUE value to
FALSE, and a FALSE value to TRUE.

Expression IntermediateResult Result

Integer to
Logical Conversion

String to Logical -
Conversion

TRUE or FALSE
TRUE and FALSE
TRUE and TRUE
NOT (TRUE)

TRUE
FALSE
TRUE
FALSE

When the value for a logical operation is an integer, it will be con-
verted to FALSE if the value is ZERO. Otherwise, it is converted to TRUE.

Expression Result

0 or 1
1 and 5
NOT 5

TRUE
TRUE
FALSE

If the value for a logical operation is a string, it is converted to a
TRUE when the STRING is 'TRUE, "ON", or "YES. The identification is
only on the leading characters of the string. If the leading characters do not
match, it is converted to FALSE.

Expression Result

"TRUE or "FALSE TRUE
'TRUEn and " O N TRUE
"TRUE and " O N FALSE
'TRUE and "ONCE TRUE ("ON" is identified in "ONCE)

I
A function is an operation, which returns a single value, that can be

used within an expression.
Some functions do not require parameters. These functions are

called System Variables. This is because their usage resembles that of
variables. MouseX is an example of a System Variable. It can be used in any
expression just as though it was a variable. However, it is a read-only variable.
This means you can not use the Let Command to change its value. It is always
equal to the "current" value of the horizontal position of the mouse pointer.

Other functions require information, in the form of parameters, in
order to perform its operation. A function can have one or more parameters,
contained within parenthesis, and separated by commas.

This assignment demonstrates the Max Function. The parameter list
for the function is contained within parenthesis. Each parameter is an
expression. This means it can contain constants, variables, operators, and
even other functions. Multiple parameters are separated by commas.

As with operators, the parameters for functions have expected data
types. The parameter is automatically converted to the required type.

The function returns a single result. This way, the function can be
placed in an expression just as a variable or constant.

Conversion Within expressions, values are automatically converted to the type of
Funttions data needed for an operation. However, the data type of the result is deter-

mined by last operation performed.

< integer > = Integer { expression 1
"string" = String { expression 1
i< logical H = Logical { expression 1

Example:
LET Count = "123" 11 "456"

The variable Count is assigned the string value of "123456".
Count could be successfully used in arithmetic operations. However,
each time it is used it is converted into an integer. IfCount is primar
ily used as an integer, it would be more efficient to convert the value
when it is assigned.

LET Count = Integer { "123" 1 1 "456")
The Integer Function converts the value within the

parenthesis into an integer. Likewise, the String and Logical
Functions convert values into strings and logicals.

Integer Functions -

Absolute

Limit

Max

Min

The following functions allow you to work with in integer values.

< integer > = Absolute (< value >)
The Absolute Function returns the absolute value of an integer. If the

value is positive or ZERO, Absolute returns the same value. If the value is
negative, it returns the positive value.

Expression Result

Absolute (156) 156
Absolute (- 66) 66
Absolute (0) 0

< integer > = Limit (< limitl > , < limit2 > , < test value >)

The Limit Function returns a value within a specified range. The first
two values, < limitl > and < limit2 > indicate the minimum and maximum
values in the range. The third parameter is the value to test. If this value is
between the two limits, the Limit Function returns the value unchanged. If it
is less than the low limit, it returns the low limit value. If it is greater than the
high limit, it returns the high limit value.

Expression Result

Limit (0,100,89) 89
Limit (- 300, - 100,45) - 100
Limit (900,400,O) 400

The Max Function returns the value of the highest parameter. The
Max Function can have one or more parameters.

Expression Result

The Min Function returns the value of the lowest parameter. The
Min Function can have one or more parameters.

Expression Result

Min (100,5000,200)
M i n (- 5 * 6 , - 1)
Min (5, 7, - 3, 10, - 5,88,8)

Random < integer > = Random (< Minimum >, < Maximum >)

The Random Function returns a random integer between and
including the < Minimum > and < Maximum > values.

Expression Result

Random (5,20) any value between 5 and 20.

Sign < integer > = Sign (< value>)

The Sign Function returns the sign of the value. If the value is
positive, it returns 1. If the value is ZERO (O), it returns 0. Otherwise, it
returns - 1

Expression Result

sign (0)
Sign (- 56)
Sign (4 * 56)

String Functions - The string functions allow you to manipulate and work with strings.

ASCII c integer > = ASCII ("String")

The ASCII Function returns the ASCII value of the first character in
the supplied string. The ASCII value is a positive integer between 0 and 255.

Expression Result

ASCII ("A") 65
ASCII ("m") 109
ASCII ("more") 109
ASCII ("<") 60

Char "string" = Char (< integer >)

The Char Function returns a single character string corresponding to
an ASCII integer. The ASCII values range from 0 to 255.

Expression Result

Char (65) " A "

Char(109) " m "
Char (60) " < "

NumberOfChars -

LowerCase

UpperCase

DupeString

TrimString

< integer > = NumberOfChars ("string")
The NumberOfChars takes a string parameter, and returns the

number of characters.

Expression Result

NumberOfChars ("Hello!") 6
NumberOfChars ("Spanish Inquisition") 20
NumberOfChars (- 67) 3

"string" = LowerCase ("string")

The Lowercase Function converts uppercase characters within a
string to lowercase. All other characters remain unchanged.

Expression Result

Lowercase ("ABCdefl23#$%) "abcdefl23#$%"

"string" = Uppercase ("string")

The UpperCase Function converts lowercase characters within a
string to uppercase. All other characters remain unchanged.

Expression Result

UpperCase ("The Input String") "THE INPUT STRING

"string" = DupeString ("string" , < count >)

The DupeString duplicates a string a specified number of times.
It returns a single string.

Expression Result

DupeString (" * ", 10) ********** n

DupeString ("- ", 6) 6' '6 - - - - - -
DupeString ("Hello! ", 3) " Hello! Hello! Hello! "

"string" = TrimString ("string")

The TrimString Function removes leading and trailing spaces and
TAB characters from the source string. In addition, multiple spaces and TAB
characters within the remaining string are replaced with a single space.

Expression Result

TrimString (" This is a Test ") 'This is a Test"
TrimString ("Hello Out there! ") "Hello Out there!"

InsertChars "string" = InsertChars ("Source" ,"destinationw ,< offset >)

The InsertChars Function inserts a source string into the destination
string at the specified offset. If the offset is greater than the length of the
destination string, the source string is appended to the end of the destination.

Expression Result

InsertChars (" ...", "123456", 4) "1234 ... 56"

RemoveChars "string" = RemoveChars. ("Source" ,< starting offset > ,< length >)

The RemoveChars Function returns a string with specitied characters
removed. The first parameter is the source string from which to remove the
characters. The second parameter specifies the starting offset of the charac-
ters to be removed. The last parameter indicates the number of characters to
remove.

Expression Result

RemoveChars ("12345", 3,2) "125"
RemoveChars ("Hello!", 5, 1) "Hell!"
RemoveChars ("Hello!", 5, - 1) "Hello!"

Findchars < integer > = Findchars ("Source" ,"Search9' ,< starting offset >)

The FindChars Function searches the contents of a source string for
a matching string.
The < starting offset > indicates the offset within the "Source" string to begin
the search. The "Search" string must match identically. If the string is found,
FindChars returns the offset within the "Source" string of the first character of
the matching string. If the string is not found, FindChars returns a
ZERO (0) .

Expression Result

FindChars ("Hello Bill!", "Bill" , 1)
FindChars ("Hello Bill!", "Fred" , 1)
FindChars ("This is it!", "is" , 1)
FindChars ("This is it!", "is" , 4)

GetChars

FindWord

GetWord

"string" = GetChars ("Source" ,< starting offset > ,< length >)

The GetChars Function returns a portion of a string.
The < starting offset > indicates the starting character of the substring.
The < length > indicates the number of characters to include.

Expression Result

GetChars ("Brainpowern,2,4) "rain"
GetChars ("Hello!, 4, 10) "lo!V
GetChars ("Jim Finney",20,1) ""

< integer > = FindWord ("Source" ,"Search Word"
{ ,< StartWordNumber > { ,'WordDelimiters" 1 1)

The FindWord searches a "Source" string for a matching "Search
Word and returns its word number. If the word is not found, it will return a
ZERO (0). The optional < StartWordNumber > allows you to specify a starting
word number to begin the search. If it is not specified, it defaults to 1. The
'WordDelimiters" can contain characters indicating the characters that
separate word.

Expression Result

FindWord ("This is a sample sentence.","sarnple") 4

"string" = GetWord ("Source" ,< WordNumber >
{ , WordDelimiters" 1)

The GetWord Function returns a specified word number from the
"Source" string. The < WordNumber > indicates which word to return. A <
WordNumber > of 1 returns the first word. A 2 returns the second word. By
default, Words are separated by spaces. You can supply a list of characters in
the optional parameter 'WordDelimiters".

Expression Result

GetWord ("The dog Smiled.",3) "Smiled"
GetWord ("DFl:Sounds/Bird.~nd",2,":/") "Sounds"

PositionOfWord - < integer > = PositionOfWord ("Source", < WordNumber > ,
{ , WordDelimiters"))

The PositionOfWord Function returns the offset into the "Source"
string for a specified word < WordNumber >. If the < WordNumber > is
greater than the number of words in the "Source" string, PositionOfWord
returns a ZERO (0). The 'WordDelimiters work in the same way as in
GetWord allowing you to specify the characters separating words.

Expression Result

Bum pRevision "string" = BumpRevision ("Name")

The BumpRevision Function changes the revision of a "Name" in the
same manner the Workbench Duplicate function does with a filename.

Expression Result

BumpRevision ("Record") "Copy of Record"
BumpRevision ("Copy of Record) "Copy 2 of Record"
BumpRevision ("Copy 2 of Record") "Copy 3 of Record

E ~ ~ I ~ ~ t ~ E ~ p r e s s i o n - results = EvaluateExpression ("String")

The EvaluateExpression Function evaluates the string parameter.
The string must contain a valid expression. EvaluateExpression returns the
results of the evaluation. If there is any uncertainty as to the validity of the
expression, a run time error can be avoided by using the VerifyExpression
Function.

This function allows expressions to be created at run time. This can
be quite powerful. However, it is error prone and it can make the script
difficult to read.

Expression Result

EvaluateExpression("5 + 6")
EvaluateExpression ("123" l l "-23")

Verify Expression -

System Variables -

<< logical n = VerifyExpression ("String")

The VerifyExpression Function evaluates the string parameter.
However, it does not return the resulting value of the evaluation. It returns a
TRUE if the expression is successfully evaluated. Otherwise, it returns a
FALSE. This function also allows an expression to be verified before using
the EvaluteExpression.

Expression Result

VerifyExpression ("5 + 6) TRUE
VerifyExpression ("6 + * 7") FALSE
VerifyExpression (" (5 + 6 ") FALSE

System Variable can be used in expressions as variables. Some of
these variables return dynamic information that is updated by CanDo. Others
have static values for common uses:

Boolean Values:

<< logical >> = FALSE - Boolean Value. (FALSE)

<< logical u = TRUE - Boolean Value. (TRUE)

<< logical >> = NO - Boolean Value (FALSE)

<< logical * = YES - Boolean Value (TRUE)

<< logical n = OFF - Boolean Value (FALSE)

<< logical n = ON - Boolean Value (TRUE)

Informational:

< integer > = AvailableChipMemory - available bytes in chip memory

< integer > = AvailableFastMemory - available bytes in fast memory

< integer > = AvailableMemory - available bytes in memory

< integer > = LargestChunkOfMemory - the largest continuous chunk of
available memory

"string" = DeckName - the Name of the current application

"string" = CardName - the name of the current Card

"string" = ObjectName - the Name of the current running Object

< integer > = Madnteger- returns 2,147,483,647

< integer > = MinInteger- returns -2,147,483,648

4< logical n = Supervised- TRUE when running from CanDo

"string" = TheTime returns the Current Time - "HH MM SS"

"string" = TheDate returns the Current Date - "YY MM DD"

CanDo has a number of System variables that are closely
related with a group of Commands. These System variables are documented
in the sections with these Commands.

Flow Control
F a n d s L, The Mow Control commands allow you to change the order of

execution within a script. Usually, commands execute one at a time from top
tr, bottom. These Commands effect this flow of execution.

If... Endlf If... EndIf
The If Command allows you to execute a group of instructions when

a certain condition is TRUE. (See Logical Expressions)

If (logical expression 1
... Commands...

EndIf

The commands between the If command and the EndIf command are
performed only when the logical expression is true.

Example:
If NumberOfHits > 10

ShowBrush "Brushes:Explode.br"
PlaySound "sounds:bang.snd"

EndIf

If... Else... Endlf - If... Else... EndIf

The Else Command can be used with an If to perform an alternate set
of commands when the logical expression is false.

Example:
If NumberOfHits > 10

ShowBrush "Brushes:Explode.br"
PlaySound "Sounds:Bang.snd"
Let NumberOfHits = 0

Else
PlaySound "sounds:Doink.snd"
Let NumberOfHits = NumberOfHits + I

EndIf

The commands between the If and the Else are performed
when the value of NumberOfHits is greater than 10. Otherwise, the
Commands between the Else and the EndIf are performed.

CanDo supports four looping combinations. These
Commands allow you to repeat a group of commands given specifled
conditions.

While... EndLoop -

Loop ... Until

While.. . EndLoop

CanDo supports four looping combinations. The While Command
allows you to repeat a group of Commands while a condition is TRUE. The
form for a While Command is:

While I logical expression 1
... Commands.. .

EndLoop

The Commands between the While and EndLoop are performed
while the logical expression is TRUE. When the While instruction is encoun-
tered, the logical expression is evaluated. If the condition is TRUE, the
Commands between the While and the EndLoop are performed. When the
EndLoop Command is encountered, execution is looped back to the While
Command. This continues until the logical expression is TRUE.

When the logical expression is FALSE, all Commands between the
While and EndLoop are skipped, and execution continues on the instruction
following the EndLoop.

Example:

Let Xoffset = 20
While Xoffset <= 300

ShowBrush "Brushes:Arro~.br",Xoffset,40
Let Xoffset = Xoffset + 20

EndLoop

Loop ... Until

The typical format for the Until Looping Command is shown below.

Loop ... Commands ...
Until 1 logical expression 1

The Until works in a similar manner as the While Loop. The com-
mands between the Loop and Until are performed until the logical expression
is TRUE. The Until Loop is used when you want the Commands in the Loop
to be performed once before evaluating the logical expression.

Example:
Let Xoffset = 20
LOOP

ShowBrush "Brushes~ow.br",Xoffset,40
Let Xoffset = Xoffset + 20

Until Xoffset > 300

While... Until While... Until

This Looping combination, while unusual, is valid. The format for the
While and Until Looping Commands is shown below.

While { logical expression I
... Commands.. .

Until { logical expression 1

The Commands between the While and Until are performed as long
as the While's logical expression is TRUE and the Until's logical expression is
FALSE.

Loop... EndLoop - Loop ... EndLoop

The form for Loop and EndLoop Commands is shown below.

Loop ... Commands.. .
EndLoop

This is a simple looping system. All commands within the looped
area are repeated until an 'ExitLoop' command is executed. You should be
very careful insuring there is a way for the ExitLoop to be performed. It is
usually within an If... EndIf placed in the Loop commands.

Exit Loop ~ x i t ~ o o p

Exits the Highest Loop Level. This command is usually within an
If... EndIf in the Loop commands. It can be used to exit any of the Loop
combinations. If you have nested Loops (Loops within Loops) it exits the
highest Loop level.

Note: Your Scripts will be more readable if you use the While and
Until conditional Looping instead of ExitLoop.

DO Do "Routine Name" { , Argument 1 ... , Argument 10)

The Do Command performs the routine created using the Routine
Object. The "routine name" must match the Name used in the Routine Editor
Requester. This is very similar to the GoSub used in other languages. The
Commands within the routine will be performed, and execution will continue
with the Command following the Do.

You can use the Routine Editor Tool for finding the available
routine names.

Examples:
If value = 5

Do "ShowExplosions"
Do "SoundEfTects"

EndIf

Optionally, you can pass a routine up to 10 arguments.
An argument is simply a value that the calling script gives the routine.

Do "Draw Box" , 2 , 10 , 20
This example calls the Routine "Draw Box" and passes it

three arguments: 2, 10, and 20. While this example uses constants,
each argument can be an expression.

The routine "Draw Box" can use the arguments to perform
its task. It does this using the System Variables Argl through ArglO.

SetPen Argl
DrawRectangle Arg2 , Arg3 , 50 , 25

If the routine "Draw Box" contained this script, it could use
three arguments to draw a box. Argl is used with the SetPen Com
mand to set PenA. The previous example passed a value of 2 for the
first argument. This would result in setting PenA to color 2. The
DrawRectangle Command draws a box with a width of 50 and a
height of 25. Its origin would be determined by the second and third
arguments. Using the previous example, this would draw the box at
10, 20.

Exitscript ExitScript

A Script usually exits after performing the last Command. An
ExitScript exits as though the last Command was performed. If the ExitScript
is performed from a Routine, execution will continue in the calling Script.

StopScript StopScript

The StopScript command is similar to an ExitScript. However, if it is
performed from a Routine, execution will not continue in the calling Script. It
does not running your application, it simply terminates the execution of the
current Script, and any scripts that may have called it using a Do Command.

Quit Quit

This Command allows the user to exit the presently running Deck.
While you are developing your application, CanDo will not allow you to exit
using a Quit Command. However, when you run it as a separate application, it
is important to provide a way to Quit.

Card Movement
Commands

These Commands change Cards in the Deck. They correspond to
the Card Movement Buttons on the Main Control Panel.

NextCard

PreviousCard

FirstCard

LastCard

GotoCard

NextCard goes to the next Card in the Deck. If you are currently on
the last Card in the Deck, it will go to the first Card.

PreviousCard goes to the previous Card in the Deck. If you are on
the first Card, it will go to the last Card.

FirstCard goes to the first Card in the Deck.

LastCard goes to the last Card in the Deck.

GotoCard "cardname"

You can use a Card's Name to move directly to a specific Card
with the GotoCard Command. The name must be spelled exactly as it was
spelled in the Card Editor Requester. The "cardname" is a string
parameter.

Example:
GotoCard "Card #2"

Graphic
Commands n The Graphic Commands change the images in your Card's Window.

This can be done by showing pictures and brushes, by drawing images or
displaying Text. In addition, there are variety of commands that control how
other drawing commands are performed.

Picture and
Brush Commands

CanDo's Picture and Brush Commands allow you to show images
created with any Paint Program. These commands include "Clipping"
allowing you to copy images from your window. These clipping images can
then be displayed or saved to a file.

LoadPitture Loadpicture "filename" { , "Name" , loadflags 1 1
Before an image can be displayed, it must be loaded into memory.

This can be done automatically with the ShowPicture Command. However,
there will be a delay as the image is loaded. This may be Ok most of the time.
However, it can be avoided by pre-loading the image using the LoadPicture
Command. The LoadFlags are described in the LoadFlags Appendix.

"Filename"
The "Filename" is the file specification for the image being loaded. It

must be a valid ILBM file type created by most Amiga Paint programs.

"Name"
The optional "Name" allows you to specify the name used by a

ShowPicture Command. When the "Name" is not specified, the ShowPicture
Command must use the exact same string used in the "filename".

Example:
LoadPicture "images:background.pic","background"
ShowPicture "background"

LoadBrush LoadBrush "filename" {, "Name" { , loadflags 1 1

The LoadBrush Command works similarly to the LoadPicture
Command, except it pre-loads a brush file created by a paint program. It can
then be shown using the ShowBrush Command. The parameters are identical
to Loadpicture's parameters.

Example:
LoadBrush "brushes:theleftmow.br","LeftArroW"
ShowBrush "LeftArrow", 10,190

ShowPicture

ShowBrush

ShowPicture "Picture Name"

The ShowPicture Command is used to change the picture being
displayed. CanDo automatically adjusts the screen resolution and color
palette. Furthermore, Visible Objects are re-displayed on the new picture.

You should be careful when using pictures of different dimensions.
Objects, such as Buttons, are displayed at specified Horizontal and Vertical
locations. For Example: If the original window had a width of 640 and a
Button is horizontally positioned at 500, it will not be visible if you show a
picture having a width of 320. The safest approach is to use different cards
with pictures having different dimensions.

"Picture Name"

The "Picture Name" indicates the file to be displayed. The name can
be a file specification. If so, CanDo will automatically load it if it is not already
in memory. It can also be a "Name" specified in a LoadPicture Command.

Examples:
ShowPicture "images:BigBird.pic"

LoadPicture "images:Background.pic",'TheBackground"
ShowPicture "TheBackground"

ShowBrush "Brush Name" , < x > , < y > { , BRUSHPALETI'E 1

This command shows a DPaint style brush at a specified location on
the current window. Optionally, you can use the color palette saved with the
brush. You will have more predictable results if the Brush uses the same
resolution as the current picture.

BRUSHPALMTE indicates to use the palette saved with the brush.

Examples:
ShowBrush "Brushes:Bat.br" , 500 , 25

LoadBrush "brushes:helloworld.br" , "theimage"
ShowBrush "theimage", 50 , 50 , BRUSHPALETI'E

Transparent Transparent u logical expression n

When a brush is saved, the background color is called Transparent.
This means instead of seeing the color, you can "see through" it. CanDo
allows you to turn this ON or OFF before showing a brush.

The K logical expression B indicates whether to turn transparency on
or off. When the expression is TRUE (or ON) you will be able to see through
the transparent color. Otherwise, the background color will be shown. Most
of the time you will want to use the constants ON or OFF.

Examples:
Transparent ON
ShowBrush "Brushes:Arro~.br",20,30

Transparent OFF
ShowBrush "Brushes:Dog.br",l20,40

Clippicture Clippicture "Picture Name" 1 ,CHIP)

ClipPicture allows you make a copy of the current card's window.
The "Picture Name" names the image so you can use it later in a Showpicture
or Savepicture Command. If the "Name" is currently being used, it will be
replaced with the clipped picture. The CHIP keyword indicates to save the
image in the Amiga's Chip memory.

ClipBrush ClipBrush < x > , < y > , < width > , < height > ,
"Brush Name" { ,CHIP)

ClipBrush lets you grab a portion of the current card's window and
use it as a Brush. The < x > and < y > indicates the Origin, the location of the
upper left comer, of the area to be clipped. The < width > and < height >
indicates the number of pixels horizontally and vertically, from the Origin, to
clip. The "Brush Name" gives it a name so you can use it in a ShowBrush or
SaveBrush Command. If the "Brush Name" currently is being used, it will be
replaced with the clipped brush. The CHIP keyword indicates to save the
brush in the Amiga's Chip memory.

So tClipTransparen tColor setCfipTransparentColor < color >
The SetClipTransparentColor Command sets the background color

used in a clipped brush. This color is transparent in a ShowBrush Command
when Transparent is ON.

Scl~@Pi<t~te Savepicture "Picture Name" { , "Filename" I

The SavePicture Command lets you save a picture. The picture can
be one that was loaded or created using the ClipPicture Command. It can
either save it in the original file or create a new one. The "Picture Name"
indicates the picture to save. The optional "filename" allows you to explicitly
indicate the file name to use. If the "Filename" is not specified, CanDo will
either save the file using the original file name, or use the "Picture Name" as
the file specification if it was created using the ClipPicture Command.

SaveBrush SaveBrush "Brush Name" { , "Filename" 1

The SaveBrush Command allows you to save a brush. This command
works similarly to the SavePicture Command, except the image is saved in the
Brush format. The parameters work the same way as the SavePicture
Commands parameters.

ShowPalette ShowPalette "Name"

This command changes the palette to the one saved with a picture or
brush. The "Name" is either the file specification or the name used with the
Loadpicture or LoadBrush Commands. If the image is not currently in
memory, the ShowPalette Command will use the "Name" as a file specification
from which to read the palette from a file.

Draw Commands - CanDo uses the Amiga Operating System supplied graphics routines.
They do not make color corrections for HAM. This means you may see some
"jaggies" when drawing in HAM mode. This can be minimized or eliminated
by only drawing on portions of the picture that use the 16 primary colors.
(AmigaWorld's March 1989 issue has a good description of HAM.)

AreaCircle Areacircle < x > , < y > , < r >

Draws a filled circle with a center of < x >,< y > and a radius of < r >.
The circle is filled with the color in PenA. The aspect ratio is not corrected for
High-Resolution Screens.

Example:
AreaCircle 50 , 50 , 25

AreaEllipse AreaEllipse < x > , < y > , < xr > , < yr >

Draw a filled ellipse with a center at < x >,< y >. The horizontal radius
of the ellipse is < xr > and the vertical radius is < yr >. The ellipse is filled with
the color in PenA.

Example:
AreaEllipse 50 , 50 , 25 , 50

AreaRectangle < x > , < y > , < w > , < h >
Draws a filled rectangle with an upper left coordinate at < x >,< y >.

The width of the rectangle is < w > and the height is < h >. The rectangle is
filled with the color in PenA.

Examples:
AreaRectangle 50 ,50 , 100 , 100
AreaRectangle 52 ,52 ,96 ,96

FloodFill FloodFill< x > , < y >

The FloodFill Command fills a solid shape starting at < x >,< y >. It
will fill using the color in PenA. The shape is determined by the color at
location < x > , < y >.

Example:
SetPen 7
FloodFill50 , 50

DrawEllipse

DrawLine

DrawPixel

FillToBorder < x > ,< y > , c BorderColor >

The FillToBorder fills a shape starting at < x >,< y > and is outined in
the color specified by the < BorderColor >. Like FloodFill, it will fill using the
color in PenA.

Example:
SetPen 3
DrawRectangle 10 , 10 , 100 , 100
SetPen 1
FillToBorder 20 ,20 ,3

Draws a circle with a center of < x >,< y > and a radius of < r >. The
aspect ratio is not corrected for High-Resolution Screens.

Draws an ellipse with a center of < x > ,< y >. The horizontal radius of
the ellipse is < xr > and it's vertical radius is < yr >.

Example:
DrawEllipse 50 , 50 , 25 , 50

This command will draw a line from < xl>,< y l > to < x2 >,< y2 >.
The current pen position will be set to < x2 >,< y2 >.

Examples:
DrawLine 50,50,100,50

Draws a single pixel at a certain location. This command uses the
present drawrnode and will set the current pen position to that of the pixel
d r am.

Parameters:
c x > The Number pixels from the windows right hand border.

c y > The Number pixels from the windows top border.

DrawRectangle DrawRectangle<x>,<y>,<w>,<h>

Draw a rectangle with an upper left coordinate of < x >,< y >. The
width of the rectangle is
< w > and the height is < h >. No aspect ratio computations are computed. The
current pen position is set to the < x >,< y > of the rectangle.

Examples:
DrawRectangle 50,50,100,100

DrawRectangle 52,52,96,96

DrawTo DrawTo<x>, < y >

This command is similar to the line Command. However, it uses the
current pen position for the starting point for the line. It draws a line from the
current pen position to the specified window coordinate. After drawing the
line, the pen position will be set to the specified window coordinates.

Example:
Line 50 , 5 0 , 100 , 5 0

Move Pen MovePen < x > , < y >

Moves the pen to the specified window coordinate. This command
does not draw any points in the window.

Example:
MovePen 50 , 5 0

Ra yTo RayTo < x > , < y >

This is similar to the DrawTo Command. With this command a line
is drawn from the current pen position to the specified window coordinate.
However, the current pen position is not modified.

Example:
Let XPos = 6 0
MovePen 160 , 100
While XPos <= 260

RayTo XPos, 10
Let XPos = XPos + 40

EndLoop

ClearWindow

Graphics Control -

Get RGB

SetAreaDrawMode -

SetDrawMode

ClearWindow { < color > I
The ClearWindow Command clears the window to its inital state.

This means it will redisplay the image if it is a Picture Window. If it is not a
Picture Window, it will clear the window to the color specified in the Window
Colors Requester or to the optional < color >. In either case, all visible objects
will be redisplayed.

Examples:
Clearwindow

The Graphics Control Commands change various values that effect
the other Graphic Commands.

GetRGB < col.reg >, < red var >, < green var >, < blue var >

Gets the RGB values from a specified color register. The RGB values
range from 0 to 255. Remember that different view mode use the color
registers very differently.

< col.reg > the color register to read
< red var > variable for the red part of the register
< green var > variable for the green part of the register
< blue var > variable for the blue part of the register

Example:
GetRGB 1, Redvalue, Greenvalue, Bluevalue

SetAreaDrawMode NORMAL or OUTLINE

The SetAreaDrawMode Command only effects the Area Commands:
Areacircle, AreaEllips, and AreaRectangle. The default mode is NORMAL.
When it is NORMAL, the area is draw in a solid color using PenA. When it is
OUTLINE, the Area is drawn using PenA outlined with the color in PenO.
When this draw mode is set, all subsiquent Area Commands will use the
specified Mode.

SetDrawMode Normal) { Jaml I t Jam2 I
{ Complement) (InverseVideo 1
This command allows the user to specify the drawing style they wish

to use. The keywords can be used with one another (i.e. SetDrawMode
Normal InverseVideo).

{ Normal I Draw with the primary pen
{ Jam1 1 Same as the Normal switch
{ Jam2 1 Draws with both primary and secondary pen

Complement I Performs a logical XOR on the pixel's own color info.
I InverseVideo) Performs a logical NOT on the other draw modes

Set Pen SetPen < pena > { ,< penb > { ,< pen0 > I I
Set the primary, secondary and outline pen's color register. This

command allows the user to specify which color to draw with. The PenB and
penO are optional.

< PenA >
< PenB >
< penO >

Example:

The color register for the primary drawing pen
The color register for the secondary drawing pen.
The color register for the area outline pen.

SetPen 1

Set RGB SetRGB < col.reg >, < red >, < green >, < blue >

Set the RGB values for the specified color register. The RGB values
range from 0 to 255. Remember that different view modes use the color
registers very differently.

< col.reg > The color register to be modified.
< red > The Red Value.
< green > The Green Value.
< blue > The Blue Value.

Example:
SetRGB 3, Redvalue, 4, BlueValue+BlueIncrement

C ~ ~ O C O ~ O ~ S CycleColors < From-Color > , < To-Color >
{ , FORWARD or BACKWARD I
The CycleColors Command cycles the current color palette.

The < From-Color > < To-Color > indicates the range. It does not make any
difference if the < From-Color > is less than the < To-Color >.

The CycleColors Command rotates the colors once from the lower to
the higher. The optional keywords FORWARD and BACKWARD specify the
direction of the rotation. If neither is specified, it defaults to FORWARD.
FORWARD indicates lower values are rotated upward. BACKWARD indicates
the higher values are rotated downward.

The CycleColors Command can be placed in a reoccurring Timer
Object to provide continuous cycling.

Example:
CycleColors 5 , 10 , FORWARD

Reg 0 1 2 3 4 5+6+7+8+9+10 11 12 13 14 15 16
4 t
4
++++++

t

Print Commands -

PrintText

SetPrintStyle

SetPrintFont

The Print Commands allow you to print text messages to the window.
You can use various fonts, sizes, colors, and enhanced print styles.

PrintText < x > , < y > , "string"
Prints the "string" using the current pen colors, print style, and font.

The x,y coordinate specifies the upper left corner of the text string.

Examples:
PrintText 50 , 50 , "Hello World"

SetPrintStyle StandardFlags { Extendernags 1
{ , < ExtPenl > { , < ExtPen2 > 1 1

The SetPrintStyle Command specifies the style of print for subse-
quent PrintText Commands. The StandardFlags are PLAIN, ITALIC, BOLD,
and UNDERLINED. You can specify one or more of these. Optionally, you
can specify one of the ExtendedFlags: SHADOW, OUTLINE, GHOSTED, or
EMBOSSED. Make sure you do not seperate any of the flags with commas.

The Extended Pens, < ExtPenl > and < ExtPen2 >, are used with the
Extended styles. The PrintText command uses the color in PenA as the
primary color for drawing the text. When using an Extended Style, the <
ExtPenl> is used as a secondary color. The EMBOSSED style uses the
additional color < ExtPen2 >.

Examples:
SetPen 1
SetPrintStyle BOLD ITALIC
PrintText 'This uses a single color. It is BOLD and

Italic." , 20 , 20

SetPen 0
SetPrintStyle GHOSTED,5
PrintText 'The Primary Color is 0 Ghosted in 5." , 20 , 80

SetPen 3
SetPrintStyle BOLD EMBOSSED, 1,2
PrintText 'The Center is Pen 3, with Color 1 and 2

on each side." , 20 , 120

SetPrintFont "Fontname" , < Pointsize >

Set the print font for the PrintText Command. If the operating
system cannot find the point size you are looking for, it will give you the next
smallest size available. If the operating system cannot find the font you are
looking for, it will give you the font Topaz 80.

Example:
SetPrintFont "Topaz" , 9
PrintText "Hello World", 50,50

GetTextDimensions - GetTextDimensions 'Text", Wdth-Variable, Height-Variable

This command sets the contents of two variables to the width and
Height of the indicated 'Text" string. It evaluates the "Text" using the current
font, point size, and Print style. The Width-Variable and Height-Variable must
be valid variable names. The variables will be set to the corresponding values.

Example:
GetTextDimensions "Hello", Hello Width, Hello Height

Functions This Function can be used in expressions to return information
relating to Graphic Commands.

Color Of Pixel < Integer > = ColorOfPixel (< x > , < y >) - This is the Color of the Pie1
at the specified x , y location

System Variables - < Integer > = PenA - This is the Color Register for PenA.

c Integer > = PenB - This is the Color Register for PenB.

< Integer > = PenO - This is the Color Register for PenO.

< Integer > = ClipTransparentColor - This function returns the
background color used when
clipping brushes.

<< logical n = Transparentstatus - This function returns TRUE if
Transparent is enabled,and FALSE if not.

I Screen and
Window
Commands

ScreenTo

The Window Object Editor allows you to define the Window when it
opens. The Window will open on either the Workbench, or a Custom Screen.
If you are not familiar with the way the Amiga works, the differences between
a Window and a Screen can be a little confusing. The Screen is the full-width
area of the display which defines the display mode, resolution, and color
palette. A Window is displayed on a Screen and can be its full size or smaller.

These Commands allow you to change the position and attributes of
both the Screen and Window.

MoveScreen < Delta - X > , < Delta - Y >

The MoveScreen Command moves the screen a specified number of
pixels right or left, < Delta - X > , or up or down < Delta - Y >. Note that under
Amiga operating systems 1.3 and before, it is not possible to move a screen
horizontally. The delta integers make it easy to move the screen specific
distances without reference to its current position.

Example:
MoveScreen 0 , - 10

This would move the screen up 10 pixels.

MoveScreen 0 , 10 - ScreenY
This example would move the screen to be 10 pixels from

the top. Because ScreenY indicates the current position, 10-ScreenY
will always position it 10 pixels from the top.

ScreenTo FRONT or BACK

The ScreenTo Command moves the screen either to the back of the
displayed screens or to the front of the displayed screens.

Examples:
ScreenTo BACK

ScreenTo FRONT

ScreenTitleBar (4 logical expression >>

This command makes the screen (if it is your own, custom screen,
and not Workbench's screen) have a visible title bar. By using this command
and eliminating your window's title, and border, and all of your window's
standard objects (dragbar, closebutton, etc.), you can use the screen's dragbar
to move the screen up and down with the mouse.

This sets the title of the screen to be the indicated text when your
window is the active window. If you have created a Workbench window, when
your window is inactive, the screen title bar will reflect some other name
(probably Workbench), and when your window is active the screen will show
the title set with this command.

MoveWindow Movewindow < Delta - X > , < Delta - Y >

The MoveWindow Command moves the window a specitied number
of pixels right or left, < Delta - X >, or up or down < Delta - Y >. The delta
integers make it easy to move the window specific distances without reference
to its current position.

Window'l0 WmdowTo FRONT or BACK
The WindowTo Command moves the window either to the back of

the displayed windows or to the front of the displayed windows. Because a
Custom Screen has only one Window, this command is only useful on a
Workbench Window. If the window was created in Backdrop mode (see
Window Options), it cannot be moved in front of other windows.

Examples:
WindoHiLb BACK

WindowTo FRONT

SetWindowTitle - SetWindomTitle 'Text"

The SetWindowTitle Command sets the title of your window to the
indicated text. If you have previously removed all of the standard window
objects, border and title, this will only add a bar to the top of your window in
which the title will be displayed. The Initial Window Title is set on the
Window Editor Requester.

SetWindowLimits - SetWindowLimits < Minx > , < MinY > , < MaxX > , < MaxY >

The SetWindowLimits Command controls the minimum and maxi-
mum size of your window. With these limitations in place, your window
cannot be resized by the user to any dimensions outside of these ranges. It is
often convenient to use this command in the Afterstartup script of your card.
In this way, immediately after the window Object has been opened, you can
set the limitations on its size before the user has had a chance to resize you
window.

Current Streen
and Window
Information

< Integer > = MouseX

< Integer > = Mousey

- Horizontal position of the mouse

- Vertical position of the mouse

< Integer > = WmdowColors - Number of Colors

< Integer > = WindowHeight - Height of the window

< Integer > = WindowWidth -Width of the window

"String* = WindowTitle - Text in Window Title Bar

< Integer > = WindowX - Horizontal offset of the window

< Integer > = WindowY - Vertical offset of the window

< Integer > = Screencolors - Number of Colors
(Same asWindowColors)

< Integer > = Screenwidth -Width of the screen

< Integer > = ScreenHeight - Height of the screen

< Integer > = ScreenX

< Integer > = ScreenY

<< logical >> = Interlace

<< logical >> = Hires

((logical n = NTSC

- Horizontal offset of the Screen

- Vertical offset of the Screen

- TRUE when the screen is Interlace

- TRUE when the screen is High-Resolution

- TRUE when N r j C Arniga; FALSE for PAL

I Brush
Animation
Commands

The Brush Animation Commands allow you to show, move, and
:ontrol DPaint I11 BrushAnims.

You simply load the animation into a buffer using the
LoadBrushAnim Command. The ShowBrushAnim Command begins the
animation on the screen. You can specify a velocity for movement with the
MoveBrushAnim Command, along with an acceleration rate. Or you can use
the MoveBrushAnimTo Command, which moves the brush animation from
it's current location to a destination with a specified velocity and duration.

Features Use of DPaintIII brush animations complete with the Forward, Reverse,
PingPong and Duration parameters.
Showing of multiple animations at the same time.
Movement of animations in your window with full clipping.
Real-time decompression in which each frame is decompressed into
chip memory as needed, or
One-time decompression in which all frames are decompressed into
chip memory. This uses more memory but provides faster animations.
Restoration of the background when the BrushAnims move.
Support for Transparent brush animations.
Sequenced animation that shows each frame in an animation before
moving.

LoadBrushAnim - LoadBrushAnim "filename" { ,"BrushAnim Name" { ,hadflags 1

The LoadBrushAnim Command preloads a DPaint I11 style brush
animation. The "filename" contains the file specification for the animation to
be loaded. The optional "BrushAnim Name" allows you to refer to the brush
animation by a name other than the "filename".

ShowBrushAnim - ShowBrushAnim "BrushAnim Name" ,c x > ,c y >
Adds the indicated brush animation to the window. The "BrushAnim

Name" indicates the DPaint I11 style brush animation to show. The name can
be a file specification or a name created using the LoadBrushAnim Command.
If the file is not already in memory, it will be loaded. The < x > , < y > indicate
the initial location of the brush animation. You must use the ShowBrushAnim
Command, to display your brush animation, before you can move it using
either the MoveBrushAnimTo or MoveBrushAnim Commands. In addition,
a BrushAnim must be shown to allow Animation Object's Scripts to be
performed.

MoveBrushAnimTo - MoveBrushAnimTo "BrushAnim Name" ,c x > ,c y > { ,ticks 1

Moves the brush animation to the specified < x > ,< y > coordinates.
If < ticks > are not provided, the BrushAnim will move instantly. Otherwise,
movement will occur over the time specified in < ticks >. If you have an Ani-
mation Object watching this BrushAnim that has an OnDestination script
defined, it will be performed when the BrushAnim anives at the specified
location.

MoveBrushAnim - MoveBrushAnim "BrushAnim Name" , c Xvel > , c Yvel > ,
{ < Xacc > , c Yacc > , 1 c ticks > } }

The MoveBrushAnim Command moves a currently displayed brush
animation "BrushAnim Name" in a direction and acceleration indicated by the
< Xvel > ,< Yvel> ,< Xacc > and < Yacc > values.

The < Xvel> ,< Yvel> are the velocity values are added to the x , y
values to move the brush animation. If the brush animation has Linear
Movement (default) then the velocity values are added after each frame. If
the brush animation has Sequenced Movement, then the velocity values are
added after each animation sequence.

The optional < Xacc > ,< Yacc > are the acceleration values that are
added to the velocity values after each time they are added to the X , Y values.
This will cause the movement of the brush animation to accelerate. If they are
not specified, they default to 0. This causes the animation to move at a
constant velocity.

The optional < ticks > value indicates the number of frames to move
in the specified direction. After it has moved for the specified number of
frames, it will stop. If you have an Animation Object watching this
BrushAnim that has an OnDestination script defined, it will be performed
when the BrushAnim anives at the specified location.

If the < ticks > is not specified, the animation will move continuously
in the indicated direction.

GetBrushAnimCoordinates GetBrushAnimCoordinates "BrushAnim Name" &variable ,Yvariable

Returns the x , y coordinates of the brush animation in the
indicated variables.

Example:

GetBrushAnimCoordinates "Helicopter" ,Helix ,HeliY

This instruction will put the x location into the variable Helii
and the y location into the variable HeliY.

RemoveBrushAnim - RemoveBrushAnim "BrushAnim Name"

The RemoveBrushAnim Command stops animating the specified
"BrushAnim Name". However, it does not erase it from the window and does
not remove the BrushAnim from memory. The BrushAnim can be removed
from memory with the Flush Command.

SetBrushAnimFlags - SetBrushAnimFlags "BrushAnim Name" ,< brushanimflags >
[, { ticks 1 I
This Command is used to specify some options for the specified

"BrushAnim Name". If the brush animation is not currently in memory, it will
be loaded.

The brushanimflags are keywords that indicate specific options.
Make sure that you do not separate the keywords with commas.

COMPRESSEDMODE or DECOMPRESSEDMODE
COMPRESSEDMODE or DECOMPRESSEDMODE

indicates how the animation is kept in memory.
COMPRESSEDMODE is the default mode; it takes less memory.
However, it takes more time to animate because each frame must be
created before it can be displayed.

RESTOREBACKGROUND or LEAVEIMAGE
RESTOREBACKGROUND or LEAVEIMAGE indicates

whether CanDo should save and restore the background each time
the animation is shown. When RESTOREBACKGROUND option is
used, you can move the animation without leaving a trail. However, it
can substantially slow down the animation. LEAVEIMAGE is the
default mode.

USEMASK or NOMASK
USEMASK or NOMASK is the same thing as transparent

mode for normal brushes. The background color saved with the
Brush Animation is transparent when it is displayed. The USEMASK
option increases the time required to display each animation frame,
especially in COMPRESSEDMODE.

SEQUENCEDMOTION or LINEARMOTION
SEQUENCEDMOTION or LINEARMOTION specifies how

the animation is moved. SEQUENCEDMOTION shows each frame
of the animation before moving it. LINEARMOTION moves the
animation on each frame. SEQUENCEDMOTION only effects the
MoveBrushAnim Command and not the MoveBrushAnimTo
Command.

FORWARD, BACKWARD and PINGPONG
FORWARD, BACKWARD and PINGPONG specify the order

in which the animation's frames are shown. FORWARD plays the
animation from first frame to last. BACKWARD plays the animation
from last frame to first. PINGPONG switches between forward and
backward motion each time the first or last frame of the animation is
displayed.

FrameOf Animation -

System Variable -

NONE
NONE changes no flags. It simply allows you to specify the

< ticks > without changing any flags.

< ticks >
The < ticks > value indicates how many ticks to remain on

each frame of the animation.

BrushAnirns << logical expression *
When the << logical expression * is FALSE it stops all animations.

When it is TRUE
it starts all animations.

This Function can be used in expressions to return information relating
to the Brush Animation Commands.

< intger > = FrameOfAnimation ("BrushAnim Name")

The FrameOfAnimation Function returns the current frame number
of the specified "BrushAnim Name". If the BrushAnim has not been loaded,
the FrameOfAnimation Function will return 0.

<< logical * = AnimationStatus - TRUE if animations are currently running
in your window.

Audio
Scripting
Commands C

PlaySound

The Audio Commands play Mono (non-stereo) digitized sounds.
'lhe Amiga IFF standard for these sounds is called 8SVX. CanDo loads these
younds and plays them through one of the four Audio Channels.

madsound "filename" { ,"Sound Name" I

The LoadSound Command loads an 8SVX sampled sound. The
Optional "Sound Name" allows you to refer to it by a name other than the
Filename. LoadSound pre-loads the sound before playing it. It can then be
used in a PlaySound or PlaySoundSequence command. This Command is par-
ticularly useful for loading a sound during the Card's Startup Script. By
preloading it, there will not be a delay the first time the sound is played.

Example:
LoadSound "Sounds:Laugh.snd"
PlaySound "Sounds:Laugh.snd"
LoadSound "Sounds:Bang.snd", "Bang"
PlaySound "Bang"

PlaySound "Sound Name" { , Audioflags { ,< period > 1 1

The PlaySound Command plays a single 8SVX sound. The "Sound
Name" can be a File specification or Name created using the LoadSound
Command. The AudioFlags and Period are described below.

PlaySoundSequence "Document Name" { , Audionags { ,< period > 1 1

The PlaySoundSequence Command plays a list of sounds. The list
is contained in a Document (See Document Commands). A Document is just
like a text editor. The PlaySoundSequence plays each "Sound Name" in the
Document one after another. Each "Sound Name" must be on a separate line.
It can be a file specification or a Name created using the LoadSound
Command.

Example:
MakeDocument "Shooting Sequence"
Type "Sounds:WatchOut.snd",NEWLINE
Type "Sounds:Bang.snd",NEWLINE
Type "Sounds:YouGotMe.snd",NEWLINE
PlaySoundSequence "Shooting Sequence"

Audio Flags ONCE

ONCE, which is the default, indicates the sound should only be
played one time.

Example:
PlaySound "Bang", ONCE

CONTINUOUS

CONTINUOUS indicates the sound should be repeated until an
Audio OFF Command is executed.

Example:
PlaySound "Music", CONTINUOUS , 6 0 0

WAIT

When WAIT is specified, the sound begins to play when an Audio
ON is executed. This can be used to start multiple sounds at the same time.

Example:
PlaySound "Sound1 ", WAIT
PlaySound "Sound2", WAIT
PlaySound "Sound3", WAIT
Audio ON

QUEUE

Normally, a sound will only play when an Audio Channel is available
at the time the PlaySound Command is performed.

QUEUE is like telling the sound to wait in line until an Audio Channel
is available. As soon as one is, the sound will begin to play. There is no limit
to the number of sounds that can be queued.

QUEUEPREVIOUS

QUEUEPREVIOUS is similar to QUEUE. Instead of playing on any
channel, if one is available, it will play on the same channel as the most
previous sound.
Example:

PlaySound "Sounds:WatchOut.snd"
PlaySound "Sounds:Bang.snd", QUEUEPREVIOUS
PlaySound "Sounds:YouGotMe.snd", QUEUEPREVIOUS

< period >

The optional period value overrides the sound's natural period/rate
saved within the 8SVX sound file. This value can range from 124, being the
fastest, to 65535 being the slowest.

Setvolume Setvolume < volume > 1 ,< channel > 1

The SetVolume Command sets the volume for subsequently played
sounds. It does not change the volume of currently playing sounds.

The Volume is an integer ranging from 0, being no volume, to 64
being full volume.

The Channel number is optional. When it is not specified, the
indicated volume is used for all channels. On the other hand, specifying a
channel between 0 and 3 sets the volume for a single channel.

Example:
SetVolume 6 4
SetVolume 32,3

Setchannel Setchannel < channel >

The SetChannel allows you to specify the channel that is used for the
next Playsound or PlaySoundSequence command. Usually, these commands
look for any available channel. If one is available, it plays the sound.

NOTE:
If you are running another application that is using the specified

channel, the sound will not be played.

Audio Audio ((logical expression >>

This Command turns all Audio Channels On or Off. The logical
expression is evaluated to True or False. (On = True and Off = False).
When the expression is True (ON), all Playsounds using the WAIT
keyword are started. When the expression is False, all sounds (regardless
of the WAIT usage) will be terminated.

MakeDocument

A Document is simply a data area that contains text. Using CanDo's
Memo Object, you can read from, and type text into a Document. The List
Object allows you to select lines from a Document.

This section describes the CanDo scripting Commands that work
with Documents. These Commands allow you to work with a Document in
the same manner as you would from a Text Editor.

Commands such as Type, work as though you were typing characters
from a keyboard. 'Type "Hello W o r l d enters the text "Hello World into a
Document. A cursor position is maintained for each Document. Typing text
into the document occurs at the cursor position.

Cursor movement Commands, such as 'Movecursor LEFT 5',
moves the cursor in the document. The Delete Command remove characters
at the cursor position.

The Commands LoadDocument and SaveDocument allow you to load
and save text files.

The Memo and List objects show the contents of a single Document.
The Document is specified in the Document Definition Requestor in the
"Document Name" field. This makes the contents of the Document Visible in
the Object. However, you can create Documents that are not visible. These
can be particularly useful in working with text "behind the scenes". For
example, some applications may copy portions of an invisible Document into
visible Documents.

While CanDo provides a number of Commands that work with
documents, not all are necessary for use in simple applications. This section is
organized with the most common and necessary Commands listed first. The
last part of this section describes the CanDo Variables that give information
about the current document.

First, it is necessary to create an empty document. This is done using
the MakeDocument Command.

MakeDocument "Document Name"
This Command creates an empty document that is identified the

"Document Name" string. The new Document becomes the Current Docu-
ment. This means Document Commands, such as Type, work with the new
document.

CanDo applications can have more than one Document. However,
the Document Commands only work with one Document at a time. The
Command WorkWithDocument Command specifies the new Current
Document.

Wor kWi t hDocument - WorkWithDocument "Document Name"

This Command changes the current Document. All subsequent
Document Commands will use the indicated Document. To work with a
Document that is visible through a Memo or List Object, you should specify
the name indicted in the "Document Name" field of the Document Definition
Requestor.

If the Document specified with the "Document Name" does not
currently exist, CanDo will make a new Document with the specified name.
Furthermore, it will attempt to automatically load a file using the "Document
Name" as a file specification. If the file does not exist, it will create an empty
document. This allows you to easily create a document and load it with a file if
it exists. However, if you do not want CanDo to attempt to load a file, you
must first create the document using the MakeDocument Command.

Loadhcument "filename" I , "Document Name" 1

Reads the contents of the specified "filename" into a "Document
Name". If a Document with a name of "Document Name" currently exists, it
will clear the document before loading the document.

SaveDocument SaveDocument "Document Name" 1 ,"filenamew I

The SaveDocument Command saves the specified "Document
Name". When the "filename" is not specified, CanDo will replace the file that
was originally loaded or use the "Document Name" as a filename if the
Document was not loaded. If the "filename" is specified, it will use it as the
filename.

TY pe Type "String" { ,NewLine I
This Command "Type's" the string into the current Document. The

string can contain imbedded LF's for RETURNS, DELETE'S and
BACKSPACE'S. These characters can be created using the Char Function.

Example:
Type "Hello" I I World

This example concatenates the string constant "Hello"
with the contents of the variable World, and types it into the current
Document.

SplitLine

New line

MoveCursor

SplitLine 1 < count > 1

This Command is the same as a RETURN key. The optional
< count > specifies the number of times to repeat the Command.

Examples:
SplitLine
SplitLine 5

This Command is the same as moving the cursor to the end of the
line and pressing the RETURN key. It does not have any parameters. It is a
useful Command for creating a new line without any concern whether the
cursor is currently in the middle of a line.

MoveCursor direction 1 ,< Count > I
Moves the cursor in the specified direction. If no count is specified,

the cursor moves once. Otherwise, it moves the direction the number of
times specified in the count. If the count is negative, the count moves in the
opposite direction.

direction: You can only use one of the direction key words.

UP
Moves the cursor Up. This Command has no effect when the

cursor reaches the first line in the Document.

DOWN
Moves the cursor Down. This Command has no effect when

the cursor reaches the last line in the Document.

LEFT
Moves the cursor Left. If the cursor is at the beginning of a

line (and it is not the first line in the Document), it moves to end of
the previous line.

RIGHT
Moves the cursor right. If the cursor is at the end of a line

(and it is not the last line in the Document), it moves to the
beginning of the Next line.

Examples:
MoveCursor UP
MoveCursor RIGHT, 10
MoveCursor RIGHT , Repeatcount + 5

MoveCursorTo MoveCursoflo location area

This Command moves the cursor to the start of or to the end of the
current Document, line, word, previous word, or next word.

location - You can only use one of the direction key words.

STARTOF
Indicates to move the cursor to the beginning of the

specified Area.

ENDOF
Indicates to move the cursor to the end of the specified Area.

area - You can only use one of the direction key words.

DOCUMENT
Moves the cursor to the specified Location within the

current Document.

LINE
Moves the cursor to the specified Location on the

current line.

NEXTWORD
Moves the cursor to the specified Location on the word after

the current word.

THISWORD
Moves the cursor to the specified Location on the current

word. If the cursor is not on a word, this Command will not have
any effect.

PREVIOUSWORD
Moves the cursor to the specified Location on the word

before the current word.

Examples:
MoveCursoflo S T m F DOCUMENT
MoveCursoflo ENDOF LINE
MoveCursoflo S T m F NDCIWORD

PositionOnLine PositionOnLine < line >
Moves the cursor to the specified Line. If the specified line number

is greater than the number of lines in the Document, the cursor is placed on
the last line. The cursor offset is not effected.

Clear

Delete

Clear LINE or DOCUMENT

This Command clears either the current line or the
current Document.

LINE
Indicates to clear the current line. This is different than

deleting the line. All characters are erased, but the line remains with
the cursor in the first column.

DOCUMENT
Indicates to clear the current Document. This is different

than deleting the Document. The Document still exists with all the
characters erased.

Examples:
CleafI'ext LINE
Cleaflext DOCUMENT

Delete Keyword (,< count > 1
This Command deletes specified text from the current Document.

An optional count indicates the number of times to repeat the action. (While
the syntax allows it, a count used with ToStartOfLine and ToEndOfLine has no
effect). Only one Keyword may be specified.

Keyword - You can only use one of the direction key words.

LINE
Deletes the Current Line. This removes the line completely,

positioning the cursor at the beginning of the next line.

TOSTrnOFLINE
Deletes all characters before the cursor to the beginning of

the line. (Count has no effect.)

TOENDOFLINE
Deletes all characters from the cursor to the end of the line.

This includes the current character.

CHARACTER
If no count is specified, a single character is deleted to the

right of the cursor location. Otherwise, the count specifies the
number of characters to delete. If the count is positive, then charac
ters are deleted to the right of the cursor. When the count is nega
tive, characters are deleted to the left of the cursor. This is the same
as a Backspace. When the count is greater than the number of
characters remaining on the line, the current line is concatenated
with the next line (previous line in the case of a backspace). This
concatenation will count as a deleted character.

Examples:
Delete LINE

Delete LINE 5

Delete TOSTARTOFLINE

Delete CHARACTER

Delete CHARACTER 5

;Deletes a single line

;Deletes 5 lines

;Deletes to the beginning of a line

;Deletes a single Character

;Deletes 5 characters

Delete CHARACTER -Repeat ;Backspaces < Repeat > times

SearchFor SearchFor "text" (, qualifiers I

Searches for the specified string. The qualifiers allow searching for
complete words and for ignoring case differences.

qualifiers - You can use one or both BYWORD and NOCASE.

BYWORD
This qualifier allows searching for complete words.

The search will not match a string if it is a portion of a word.

NOCASE
This qualifier allows searching for a string ignoring case

differences between the search string and the potential target string.

Examples:
SearchFor "FooMan Chew"
SearchFor "is", BYWORD
SearchFor "bald", NOCASE BYWORD

Replace Replace "fromhxt","totext~~ { , { GLOBAL 1 { BYWORD 1 { NOCASE))

The Replace Command replaces the "fromtext" with the "totext". It
will search forward from the current cursor location for the "fromtext". If the
"fromtext" is not found, nothing will happen. If it is found, the cursor will be
moved to the character following the new "totext".

qualifiers - You can use one or more qualifiers with the Replace Command.

GLOBAL
GLOBAL replace all remaining matches of the "fromtext"

with the "totext" string. When it is not specified, only one replace can
potentially be replaced.

BYWORD
BYWORD indicates the "fromtext" will not match if it is

contained within a word.

NOCASE
NOCASE indicates the "fromtext" will match even if some of

the characters are not the same. If NOCASE is not specified, it must
match exactly.

InsertDocument "Document Name"
{ , c Start Line > { , c LineCount > 1 1

The InsertDocument document Command copies the text from the
specified "Document Name" into the current document at the current cursor
position. The optional < Start Line > specifies the first line, from the "Docu-
ment Name" to copy. When it is not specified, it starts on line 1. The optional
c LineCount > indicates the number of lines to copy. If it is not specified, all
lines after the < Start Line > are copied.

If the "Document Name" does not exist, CanDo will attempt to auto-
matically load it using the "Document Name" as the file specification.

Examples:

InsertDocument 'Work Document"
InsertDocument "S:startup-sequence"
InsertDocument "My ResumeW,5
InsertDocument "DF1 :WorkFile.TXTn,25,10

SetWordDelimiters - SetWordDelimiters "delimiterlist"

This Command sets the word delimiter list. The word delimiters
define the characters that separate words. The default delimiters are
, () ! @ # $ % " & * - = + \ I < > ? / inadditiontotheTABcharacters
and Line Delimiters. A word is defined to be characters that have one or more
of the word delimiters on both sides of the word.

The "delimiterlist" string contains the delimitating characters for
words. This string can be any size. The beginning and ending of a line are
always word delimiters. As such, they are not explicitly in the list, but are
always implicitly delimiters.

The following list of CanDo variables return information about the
Current Document. These are write only variables that can be used in any
expression.

< Integer > = TheLineNumber - line number the cursor is on.

< Integer > = TheColumnNumber - column number the cursor is on.

" String " = TheLine - the character string for the current line.

" String " = Thecharacter - the character the cursor is on
("" if at the end of line)

" String " = TheWord - the current word the cursor is on.
This value is based on the word delimiters.

" String " = CharsToBegOfLine - the characters before the cursor on
the current line.

" String " = CharsToEndOfEne - the characters from the cursor
to the inc of the current line.

< Integer > = LinesInDocument - the number of lines in the
current Document.

< Integer > = LengthOfLine - the length of the current line

< Integer > = SizeOfDocument - the number of bytes in the current
Document.

" String " = Documenflame - the name of the current document.

< Integer > = SizeOfDocument - number of characters in Document.

" String " = TheWordDelimiters - the characters separating words in
the current Document.

File 1/0 -

OpenFile

FileReadLine

The File I/O Commands provide an easy way to write and read data
from files. CanDo uses the Arniga's Buffered I/O system for implementing
these commands. While the commands are not complicated, they are in-
tended for those who are familiar with File I/O.

If you are mostly interested in working with text files, you might want
to consider using the Document commands.

OpenFile "filename" , "Buffer Name" , IOFlags , AccessFlags

Opens a file for input/output purposes. Memory is the only limit to
the number of opened files that can be open at one time. The "filename"
specifies the file to be opened. The "Buffer Name" is a string used to identify
the buffer associated with this file access.

The IOFlags are READONLY or WRITEONLY. READONLY
indicates that you can only read ASCII data from the file. WRITEONLY means
that you can only write ASCII data to the file.

The AccessFlags are NEWFILE, OLDFILE or APPEND. NEWFILE
indicates to create a new file. If the specified file already exists, then it is
deleted. OLDFILE indicates to open an existing file. If it does not currently
exist, it is created. This is the DEFAULT operation. APPEND is similar to
OLDFILE, except it will position all writes to the end of the file.

Example:
OpenFile "t:Savedata.W , "Data" , READONLY , OLDFILE

FileWriteIine "Buffer Name" , "String"

This command will output the "string" to the file referenced by the
"Buffer Name". An important note about this command is that it will output a
linefeed at the end of each write. The file associated with the "Buffer Name"
must have been opened in WRITEONLY mode for this command to work.

Examples:
FileWriteIine "Data" , ''Tlis is a Data Line."

Let OutputData = Outputdata I I "additional data"
FileWriteLine "Data" , OutputData

FileReadLine "Buffer Name" , VariableName

The FileReadLine Command reads a line from a previously opened
file. It creates a string and saves it in the specified VariableName. A line from
the file is defined to be a string terminated with a line feed.

Example:
FileReadLine "Data File" , DataIine

FileReadC hars FileReadChars "Buffer Name" , VariableName , < NumberOfChars >

This command reads a specified number of characters, <Number-
OfChars>, from a previously opened file, "Buffer Name". These characters are
stored in the VariableName.

Example:
FileReadChars "Input File" , Fivechars , 5

Filewritechars Filewritechars "Buffer Name" , "String" { , < length > 1

This command will output the characters contained in "string" to the
file associated with the "Buffer Name". This command di£fers from the
FileWriteLine in that this command will NOT output a linefeed after each
write. The referenced file must have been previously opened in
WRITEONLY. There is an optional argument that specifies how many
characters to output. If the length specified is greater than the length of
"expression" then only what is contained in "expression" is written.
If the "expression" is shorter than the specified < length >, spaces are NOT
concatenated to the string.

Example:
FileWriteChars "Data", Outdata I I spaces, 20

Set FileBufferSize - SetFileBufferSize < sizeinkilos >

This command sets the file input/output buffer size in kilobytes. The
default for the buffer size is four (4) kilobytes. A value of 8, allocates 8192 byte
buffer. The buffer size is set on a file by file basis. This command only
changes the buffer size of files opened after the command is issued.

Example:
SetFileBufferSize 2
OpenFile "kWorkFile.dat" , 'WorkData" .

READONLY , OLDFILE

Close Close "Buffer Name"

This command closes the file associated with the specified Data
Name. The 'Flush' command performs the same function when used with a
"Buffer Name". Any buffered changes that you have made to the file will be
written to the file at this time.

Most application programs on the Amiga have a file that goes with
them called an icon file. All such icon files end with the letters ".infov. These
files contain imagery that Workbench uses to display a visual representation
of the application on the Workbench screen or in various Workbench win-
dows. Most diskettes and many data files also have icon files. With CanDo,

Loadlcon -

Savelcon

you can easily create, examine, and modify icons without knowing any of the
details of the icon file internal format.

LOadIcon "FileName" { ,"Name9' { , < load fl@s >))

Loads the icon for the "FileName" into memory. The extension of
".infov is automatically appended to the filename. Therefore, to load the icon
for CanDo you would type, Loadrcon "CanDo". Any valid Amiga icon can be
loaded with this command, although only Project and Tool icons can be
created using the MakeIcon Command.

SaveIcon "Icon Name" { ,"FileName"

This command saves the icon buffer "Icon Name" as the icon for the
"FileName" indicated. The extension of ".infow is automatically appended to
the filename. This command will overwrite any icon that already exists for the
"FileName". If the "FileName" parameter is not included, CanDo will save the
file using the original file name or use the "Icon Name" as the file specification
if it was created using the MakeIcon command.

If the icon "Icon Name" is not already in memory, it will be loaded
and then saved, so you can easily copy an icon from disk to a new name
without first loading it.

Example:
SaveIcon "fred","ram~lack"
Flush "fred"

This script would load the icon file "£red.info" from disk
(assuming it was not already in memory) and save it into a file
called "ram:Jack.info". The "fred icon buffer in memory would
then be flushed.

Makelcon MakeIcon "Icon Name", PROJECT or TOOL,"ImageName"
I ,"AltImageName" 1

This command creates an icon buffer with the given "Icon Name".
You must specify whether this icon is to be a PROJECT or a TOOL icon
(explained below), and you must indicate a Brush to use for the image of the
icon. In addition, you may specify a Brush buffer to use for the highlight of
the icon when it is clicked on with the mouse on Workbench. If you do not
specify an AltImage Brush, the icon will complement when clicked. If either
the "ImageName" or the "AltImageName" brushes are not in memory cur-
rently, they will be loaded from disk and buffers for them will be created using
the indicated names.

Once an icon has been created in this way, it can be saved to disk
with the SaveIcon Command.

Examples:
MakeIcon "MyProject", PROJECT, "Brushes:WorkIcon.br",

MakeIcon "MyTool", TOOL, "Brushes:Tooll.br",
"Brushes:Tool2.br"

SetDefaultTool SetDefaultTool "Icon Name" , "DefaultTool"
This command sets the Default Tool of the icon "Icon Name". If

"Icon Name" is not already in memory, it will be loaded. The Default Tool of
an icon is the application that will be run if the icon is double-clicked on
Workbench and is itself not an application. For example, many paint pro-
grams make icons for the pictures and brushes that they save. When the icon
is double-clicked the paint program that made the icon is launched and it then
loads the picture.

By using the Info menu command from the Workbench, you can see
the various default tools specified by icons on your Amiga.

When choosing a default tool for icons you create or modlfy with
CanDo, it is important to be sure that those applications properly deal with
being run from the Workbench environment. CanDo and all of your applica-
tions made with CanDo can run equally well from CLI and Workbench.

Setlconlmage SetIconImage "Icon Name" , "ImageName" 1 ,"AltImageName" I

SetIconImage changes the image for "Icon Name" to the Brush
"ImageName", and, if the "AltImageName" is supplied, will also set the
highlight of the icon to that image. If the "AltImageName" is not supplied, the
current highlight mode for the icon will not be changed. If the "Icon Name",
or either of the Brushes, is not in memory it will be loaded into memory and
will be given the indicated names.

Note: that the size of the "hit area" of the icon will be changed to
reflect the size of the "ImageName" used in this command.

Icon Functions

DefaultTool

IconType

InsertToor~eList "Icon Name"

This command TYPES into the current Document all of the
ToolTypes for the "Icon Name" (see Document commands). A ToolType is
any ASCII string that contains information about any subject you like. By
using the Info command from Workbench on the CanDo icon, you will see
that it uses many ToolTypes to control the default configuration for CanDo.
(These ToolTypes can also be set through the Workbench Info command.)

By performing this command when your CanDo application starts,
you can let your user specify information which your application can use while
running. For example, you could create a single-card application called
'Wewer" that performed the following script in its Afterstartup script:

LoadIcon TheOriginDirectory I I "Viewer" ;load our own icon
MakeDocument "pictures"
InsertToonlpeList ;get the filenames
MoveCursorTo StartOf Document

While TheLine < > " " ;continue until a blank line
If FileType(TheLine) = "Picture" ;make sure it's OK

Showpicture TheLine ;show it if so
Delay 0 ,10 ,O ;wait for a sec

EndIf

Movecursor Down
EndLoop

;go to the next line

This is a slide-show program created with CanDo in the amount of
time it takes you to type in the above script. The user just puts the names of
the picture files to show into the icon using theworkbench Info command and
then runs your program.

SetToolIypeList "Icon Name" , "DocumentName"

This command takes each line from the indicated Document and
makes it part of the "Icon Name"% ToolType list. See InsertToolTypeList
above for a discussion of the function and merits of ToolTypes.

These Functions can be used in expressions to return information
relating to the Icon Commands.

"String" = DefaultTool ("Icon Name")

The DefaultTool Function returns the default tool for the icon buffer.
See the SetDefaultTool Command for more information about DefaultTools.

"String" = IconType ("Icon Name")

The IconType return the icon type for the "Icon Name". It returns a
string indicating the Type. It returns one of the following: "Project", "Disk,
"Drawer", 'Tool", "NDOS", "Device", "Kickstart", and "Unknown".

ARexx
Commands I-

SpeakTo -

ARexx is a high-level language developed by William Hawes. Applica-
tions supporting ARexx offer standardized communications using Amiga
Public Message Ports. An application can create a Public Message Port for
receiving ARexx messages. A Port created for this purpose is referred to as
an ARexx Port.

CanDo does not internally support ARexx's interpreted language;
CanDo supports ARexx communications. While the ARexx language itself can
be a powerful enhancement to your Amiga, it is not required for your CanDo
application to utilize ARexx communication.

Your application can send or receive ARexx messages, or do both. To
receive messages, you need to create an ARexx Port using the ListenTo
command. By putting this command in the Startup script of your first Card,
you can be sure you are ready to receive messages in the Port. The CanDo's
ARexx Objects allow you to look for specific messages received by the Port.
After receiving a message, a script can use the System Variable TheMessage
to examine the full text of the message.

CanDo can also send messages to other applications that support
ARexx. The SpeakTo Command tells CanDo the name of the ARexx Port
belonging to the application with which you want to communicate. The
SendMessage Command sends a message to the application through this
Port. You can optionally receive Results from the application. When sending
a message to another application, you should consult its documentation
regarding its ARexx Port name and valid message commands. Of course, you
can design your own applications using CanDo that communicate using
ARexx.

SpeakTo "PortName"

This Command tells CanDo the name of the ARexx Port to send
messages to. All subsequent SendMessage Commands will send messages to
the specified "PortName".

SendMessage

ListenTo

SendMessage "MessageText" (, NORESULTS)

The SendMessage Command sends the "MessageText" to the
"PortName" specified in the most previously executed SpeakTo Command.
The optional keyword, NORESULTS, indicates that the application does not
return a text message. If NORESULTS is not specified, the System Variable
MessageReturned will contain the returned message.

The System Variable MessageErrorCode will contain an error code
returned by the application. By convention, a ZERO indicates it completed the
operation. A non-zero value is an application specified error code.

Example:
SpeakTo 'W~dget"
SendMessage "Do Your Job"
if MessageErrorCode < > 0

GoToCard "Error Card"
endif

This example first tells CanDo to send messages to an
application that has an ARexx Port with a name of 'Widget". It then
sends the message "Do Your Job". The System Variable will not be
equal to 0 (ZERO) if the application returned an error condition. This
script would cause your CanDo application to go to a Card called
"Error Card".

IistenTo "PortName"

This command specifies the name of the "PortName" for receiving
messages. This is the Public Message Port through which your ARexx
Objects receive messages. If you have not previously specified a ListenTo
Port, CanDo will create a Public Message Port by the specified name. If you
are changing the ListenTo "PortName", the old "PortName" will no longer
exist. It is considered good practice for your application to have only one
"PortName" for receiving messages.

This command TYPE'S the list of all Public Message Ports into the
current Document (see Document Commands). Each Port name will be on its
own line. Because there are Public Message Ports that do not support ARexx
messages, you should not haphazardly send messages to just any port in the
list. Sending a message to a non-ARexx Port can cause the Arniga to crash.

"String" = CurrentListenTo - "PortName" of most recent ListenTo.

"String" = CurrentSpeakTo - "PortName" of most recent SpeakTo.

< integer > = MessageErrorCode - Error Code from previous Return
message.

"String" = MessageReturned

"String" = TheMessage

- Most recent Return message.

- Last message received through
ListenTo.

Object
Commands

The Object Commands effect various Objects created with CanDo.
Many of these commands use an "Object Name" as a parameter. The "Object
Name" should coorespond to the Name specified in an Object's Editor (See
Objects Documentation for more information).

DisableObject Disableobject "Object Name"

The "Object Name" identifies a Button, Field, or Document Object.
This command will make the Object inaccessable to the user of your applica-
tion and the Object will be displayed as ghosted.

EnableObjett Enableobject "Object Name"

This command will make the Object accessable to the user of your
application and will display the Object as non-ghosted. Note that simply
enabling certain types of Objects is not enough to ensure that their appear-
ance is the way you want it to be. This can be especially true for Fields and
Area Buttons. In these cases, a Clearwindow Command may be appropriate
to use after the EnableObject Command.

SetObjettState Setobjectstate "ObjectName" , u logical expression w

This Command can be used to deselect or select a Button, Field, or a
Memo Document. When the cc logical expression n is TRUE, it will select the
Object. When it is FALSE it will delselect the Object. For Buttons, selection
means that the highlighted form of the Button's display is shown in the
window. For Fields and Memos, selection means that this Object will receive
keyboard input and a cursor will appear in the Object's hit area.

Fast FeedBatk FastFeedBack << logical expression >,

The FastFeedBack Command enables or disables fast feedback of
mouse movement for an Object's Drag Script. The Drag Script is performed
while the left mouse button is pressed and moved over a selected Object.
Each time the mouse is moved, the Drag Script is performed. It is possible for
the mouse to move several times while the Drag Script is being performed.

When FastFeedBack is disabled, the Drag script is performed for
every mouse movement, including the movements that could not be per-
formed while a script is being performed. This has the benefit of having the
script performed at each point in a path. However, this will cause the execu-
tion of a script to fall behind the current location of the mouse pointer.

When FastFeedBack is enabled, the Drag script will skip up to 20
mouse movements that occurr while a script is being performed. This allows
the script execution to keep up with mouse movement. However, this means
it will potentially miss some of the points along the path.

If the w logical expression P is TRUE, then fast feed back is enabled.
Otherwise, it is disabled.

Setlnteger

SetText

TextFrom

MoveObject "Object Name" , < x > , < y >

The MoveObject Command moves a visible Object in your window.
You can use the MoveObject Command to move Buttons, Fields, and Docu-
ments. The "Object Name" is the Name specified in the Object's Editor. The <
x > , < y > values are the horizontal and vertical coordinates where you want to
move it to. NOTE: it is possible to move the object off the visible port'on of
your window.

SetInteger "Object Name" , < value >

The SetInteger Command sets the value displayed in the Integer
Field indicated by the "Object Name". The "Object Name" is the Name
specified in the Field Editor Requester. The < value > is the integer value to put
into the field. The Minimum and Maximum range for this value will be
controlled by the Limits as Defined in the Field Editor Requester for this field.

SetText "Object Name" , 'Text"
The SetText Command sets the string displayed in the String Field

indicated by the "Object Name". The "Object Name" is the Name specified in
the Field Editor Requester. The 'Text" is the string value to put into the field.
No more than the Maximum Number Of Characters (as defined in the Field
Editor Requester) will be copied into the field.

< integer > = Integerfiom ("Object Name")

The IntegerFrom Function returns the integer currently displayed in
an Integer Field. The "Object Name" is the Name specified in the Field Editor
Requester. The < integer > value is guaranteed to be between the Maximum
and Minimum values specified in the Integer Field Requester.

'Text" = TextFrom ("Object Name")

The TextFrom Function returns the string currently displayed in a
Text Field. The "Object Name" is the Name specified in the Field Editor
Requester.

<< logical >> = 0bjectStat.e ("Object Name")

I Buffer
Commands

The data CanDo uses is stored in area of memory called a Buffer.
Every Picture, Brush, Brushhim, Document, Sound, File I/O, and Icon, is
kept in a Buffer. CanDo "manages" these buffers for you automatically. This
automatic system is designed to relieve the novice user from concern about
what can be a complicated problem. For this reason, it is not necessary for all
CanDo users to concern themselves with using the Buffer Commands.
However, these commands are provided for the users who may want to
change the way the automatic system works.

Each Buffer has a unique Name. The Name is simply a "String"
identifying the Buffer. Most of the time, the Name is the file specification
from which the data was loaded. This is the case when a ShowBrush Com-
mand needs to load the image before showing it. However, the LoadBrush
Command allows you to provide some other Buffer Name. (Note: most of the
documentation avoids the terminology "Buffer" because it would make it seem
unnecessarily complicated.)

CanDo keeps track of each Buffer's Name, Data, the file specification
if the Data came from a file, the Buffer Type, whether it is currently being
used and if the data has been modified. The purpose of this is to manage the
memory used by a buffer.

Memory is a scarce resource that is in constant demand. The types
of operations made easy by CanDo can be a nightmare of details for a pro-
grammer in another language. For example: when a picture is to be displayed,
memory must be allocated from a "Pool" that is available to all programs. The
Picture is loaded from a file that was created in a standard format known as
IFF. The IFF data is loaded from the file and converted to a form that the
Amiga Hardware can use for displaying the image. For the image to be
displayed, it must be put into the Amiga's Chip memory. There is a separate
Pool for Chip memory. When the picture is done being displayed, its memory
is given back to the Pool.

Some of the difficulty occurs when there is not enough memory in
one of the Pools. There are ways to tell the Amiga Operating System give
back memory that it is not using any more. If there still is not enough mem-
ory, the program needs to look for memory it has allocated from the Pool and
is not currently being used.

When CanDo can not get enough memory from a Pool to complete an
operation, it looks through the Buffers and returns as much memory as it can.
If the Buffer's Data is not currently being used and it has not been modified,
CanDo returns the memory being used by the Buffer's Data. However, it
keeps all of the other information about the Buffer.

By keeping the Buffer information and not its Data, CanDo can
automatically reload the data from the file if it is ever needed again.

Flush

RamScram

SetAutoLoadFlags (CHIP and ASNEEDED) or NONE

The LoadFlags Appendix describes how you can control on a file by
file basis how CanDo keeps the file in memory. However, many of the files
are automatically loaded without a load command. This is done with com-
mands such as ShowBrush and Playsound. Files are also loaded by some of
CanDo's Objects such as Image Buttons and Picture Windows.

The SetAutoLoadFlags Command allows you to use the loadflags
ASNEEDED and CHIP for files that are automatically loaded. When
ASNEEDED is indicated, CanDo automatically returns the Buffer's Data as
soon as it is not being used. The CHIP keyword indicates the file should be
loaded directly into the Arniga's Chip memory. While having the Data in Chip
memory can speed up some operations, it increases the chances of CanDo
running completely out of memory. By Default the AutoLoadFlags are
NONE.

Examples:
SetAutoLoadFlags ASNEEDED

SetAutoLoadFlags CHIP

SetAutoLoadFlags CHIP ASNEEDED

SetAutoLoadFlags NONE

Flush "Buffer Name"

The Flush Command frees all memory used by the specified "Buffer
Name". This causes CanDo to forget everything about the Buffer as though it
was never created. If you Flush a buffer that is currently being used, CanDo
will Flush it as soon as it can.

Example:
LoadBrush "brushes:theimage.grab","arrow"
ShowBrush "arrow",50,50
Flush "arrow"

This command Flushes all Buffers. Buffers that are currently being
used will be flushed as soon as they can be safely flushed.

RamScram

This causes CanDo to free all Buffer Data that is not being used and
has not been modified. Unlike Flushing a buffer, it does not cause CanDo to
forget the buffer completely. This way the Data can be automatically loaded if
it is needed again.

This command TYPE'S the name of all modified buffers into the
current Document (See Document Commands). Each Buffer Name will be on
a separate line.

SaveAIIC hangedBuf f ers SaveAllChangedBuffers
This causes CanDo to save all buffers that have been modified. If the

Data was originally loaded from a file, it will be saved using the original file
specification. Otherwise, it will use the Buffer Name as the file specification.

GetBufferlnfo GetBufferInfo "Buffer Name", Varl I ,Var2 { ,Var3 I ,Var4 1 1 I

This command returns information about the specified "Buffer
Name". This Command only supports the Buffer Types of Picture, Brush,
BrushAnim, Sound, and Documents. The Varl through Var4 specifies the
variable names that should be set to the buffer information. Each of the valid
Buffer Types sets the variables to a specialized piece of information for the
specific Type. These are outlined below:

Buffer Type Varl Var2 Var3 Var4

Picture Width Height Depth
Brush Width Height Depth
BrushAnim Width Height Depth # of Frames
Sound Samples Seconds Sample Rate
Documents Lines Longest Line Size

Examples:
GetBufferInfo"Images:Man.pic",PicWidth,PicHeight,

NbrOfBitPlanes

Functions This Function can be used in expressions to return information
relating to the Buffer Commands.

BufferType "string" = Bdeflype("Bder Name")
This function returns the Buffer Type for the specified "Buffer

Name". The Buffer Types are: "Brush", "BrushAnim", "Document", "Icon",
"Picture", "Read File", 'Write File", and "Sound". If the "Buffer Name" is not
found, BufferType will return a NULL ("") string.

Sytem Variables ((logical n = AnyChangedBders -TRUE if there are any modified Buffers.

Commands C
This last section contains various other commands relating to overall

control of the Amiga and of your application.

Pointer Pointer * logical expression N

This command turns on or off the mouse pointer. When the G logical
expression D value is TRUE, the image is turned on. When it is False, it is
turned off.

Example:
Pointer ON

Set Pointer SetPointer "Brush Name" [,< x > ,< y > I

This command allows you to use a DPaint style brush as the mouse
pointer. It can be up to 16 pixels wide, and as tall as 127 pixels. If it is larger
than these dimensions, only the leftmost and topmost part of the image will be
used. The Optional < x > ,< y > offset specifies the "hotspot" for the pointer.
Otherwise, it will assume it is located at 0 ,O.

Color Registers 17,18 , and 19 are used both for displaying an image
and for the mouse pointer.

Examples:
SetPointer "Brushes:HandImage.br" ,5 ,5

DOS Dos "DOS Command"

The Dos Command executes the string specified in "DOS Command"
as an AmigaDOS command. This works as though you typed the command
from a CLI Window.

Example:
Dos "run c:dir >Ram:Temp.txt"

SetCurrentDirectory - SetCurrentDirectory "directory path"

This Command sets your application's default directory. This
command affects file specifications that do not include "device:" portions. It
also sets the initial default directory for applications invoked using the Dos
Command. Many applications use this default directory for identifying their
environment.

Delay Delay < mm > ,< ss > ,< jj >

The Delay Command causes a delay in the execution of the script.
The values indicate the number of minutes, seconds, and jiffies to delay. The
script continues to execute after the delay.

Note: while a script is being executed, no other object's scripts can be
processed. This prevents any Buttons, Menus, etc ... from executing a script.
Because the delay cannot be interrupted, an excessively long delay will
prevent you from exiting a script until the delay has elapsed.

The < mm > value indicates the number of minutes, the < ss >
indicates the number of seconds, and the < jj > indicates the number of jiffies
to delay. (U.S. Amigas use 1/60 of a second for jiffies, and PAL Amigas use
1/50 of a second.)

Examples:
PrintText 50 ,50 ,'Taking a 6 second breather."
Delay 0 ,6 ,O

PrintText 50 ,50 ,"Taking a One minute break."
Delay 1 ,0 ,0

PrintText 50 ,50 ,"Hold for a half a second."
Delay 0 ,O ,30

Echo Echo "Text" I , NOLINE 1

The Echo Command prints a text message if CanDo or your applica-
tion was started from a CLI. This can be useful for making CLI applications or
displaying debugging information.
Example:

Echo "Print on my CLI Window"
Echo "Variable Count = " II Count

InsertDevicelist - InsertDeviceList LOGICAL PHYSICAL ASSIGNS ALL

This command TYPE'S the list of Devices into the current Document.
The keyword LOGICAL returns the logical names of all mounted devices.
PHYSICAL returns the physical device names (i.e. DFO:,DFl:). ASSIGN
returns all system assignments. ALL returns all LOGICALS, PHYSICALS, and
ASSIGNMENTS.

Examples:
MakeDocument "System Assignmentsn
InsertDeviceList ASSIGNS

MakeDocument "All Devices"
InsertDeviceList ALL

InsertDirectorylist - InsertDirectoryIist { MLESONLY or DIRECTORIESONLY 1
This command TYPE'S the Directory listing for the Current Directory

(see SetCurrentDirectory). The optional keyword FILESONLY excludes
directories from the directory listing. DIRECTORIESONLY returns only the
subdirectories in the Current Directory.

Examples:
MakeDocument "System Directory"
SetCurrentDirectory "SYS:"
InsertDirectoryIdst

MakeDocument "Font List"
SetCurrentDirectory "Fonts:"
InsertDirectoryList DIRECTORYIESONLY

InsertStartingMessage InsertstartingMessage

The InsertStartingMessage Command is used to get the parameters
used for starting an application. If it was started from Workbench using an
Icon, it will TYPE the full pathnames of all other icons that were selected at
the time your application was started into the current Document. (A user of
your program could select five icons and then start your program. With this
command, you would get the names of the five files referred to by those five
icons.) If your application was run from CLI, this command TYPES each of
the parameters on the command line. Any parameters enclosed in double-
quotes will be treated as single parameters. They will have the double-quotes
removed and internal any doubled double-quotes (" ") will be reduced to
single double-quotes.

NOTE: When developing your application from CanDo, this com-
mand will insert the starting message for CanDo. After all, CanDo started
your program after itself having been started. When running your applica-
tions separately, however, InsertStartingMessage will insert the starting
message to your application.

<< logical B = StartedFromWorkbench - TRUE when started from Workbench

"string" = TheCommandLine - Returns the command line if started from
CLI, otherwise a NULL string

"string" = TheCurrentDirectory - Returns your application's
current directory

"string" = TheOriginDirectory - This is the directory your program
started running from.

Ap endices
In B ex

Commands Index 7 - 1

LoadFlags Appendix 7 - 7

Advanced Features 7 - 8

Error Messages - Syntax Errors 7- 10

Error Messages - Run Time Errors 7 - 11

Error Messages - File Errors 7 - 13

Commands
Index

Page Command

< Integer > = Absolute (<value>)
<< Logical rn = Animationstatus
* Logical * = AnyChangedBuffers

Areacircle < x >,< y >,< r >
AreaEllipse < x >,< y >,< xr >,< yr >

AreaRectangle < x >,< y >,< w >,< h >

< Integer > = ASCII (" String ")
Audio Logical Expression n

< Integer > = AvailableChipMemory
< Integer > = AvailableFastMemory
< Integer > = AvailableMemory

BrushAnims a Logical n
" String " = BufferQpe ("Buffer Name")
" String " = BumpRevision ("Name")
" String " = CardName
" String " = Char (< Integer >)

" String " = CharsToBegOfLine
" String " = CharsToEndOfLine

Clear LINE or DOCUMENT
Clearwindow { < color >

ClipBrush < x >,< y >,< width >,< height >,"Brush Name" { ,CHIP I
Clippicture "Picture Name" { ,CHIP }

< Integer > = ClipTransparentColor
Close "Buffer Name"

< Integer > = ColorOfPixel(< x >,< y >)
" String " = CurrentIistenTo
" String " = CurrentSpeakTo

CycleColors < From-Color >,< To-Color > I, FORWARD or BACKWARD 1
" String " = DeckName
" String " = DefaultTool("1con Name"]

Delay < mm >, < ss >, < jj >
Delete Keyword { ,< count >I

Keyword: TOSTARTOFLINE, TOENDOFLINE, or CHARACTER
Disableobject "Object Name"
Do "routine name" { &gl, ... &lo I

Page Command

" String " =

results =

< Integer > =

< Integer > =

< Integer > =

DocumentName
Dos "DOS Command"
DrawCircle < x >,< y >,< r >
DrawEllipse < x >,< y >,< xr >,< yr >
DrawIine < x l >,< y l >,< x2 >,< y2 >
DrawPixel< x >,< y >
DrawRectangle < x >,< y >,< w >,< h >

D d o < x > , < y >
Dupestring (" String " , < count >)

Echo "Text" { , NOLINE 1
Enableobject "Object Name"
EvaluateExpression (' String ")
ExitLoop
Exitscript
FALSE
FastFeedBack u Logical Expression *
FileReadChars "Buffer Name", VariableName, < Numbemhars >
FileReadLine "Buffer Namen,VariableName
Filewritechars "Buffer Name" , " String " { , < length > 1
FileWriteIine "Buffer Name","Sbingn
FillToBorder < x >,< y >,< BorderColor >
Findchars ('Source" , 'Search" , < starting offset >)
Findword("Source","Search Wordn{ ,< StartWordNumber > { ,"WordDeliiiters"] 1)
Firstcard
FloodFill< x >,< y >
Flush "Buffer Name"
FlushAU
FrarneOfAnimation ('BrushAnim Name")
GetBrushAnimCoordinates "BrushAnim Name", Xvariable,Yvariable
GetBufferInfo "Buffer Name", Varl { ,Var2 { ,Var3 { ,Var4) 1 1
Getchars ("Source" , < starting offset > , < length >)
GetRGB < col.reg >, RedVar, GreenVar, BlueVar
GetTextDimensions "Text",Width-Variable, Height-Variable
GetWord ("Source", < WordNumber > { ,'WordDelimitersn 1)
GotoCard "cardname"
Hires
Icon'Ilpe("1con Name")
If u Logical Expression * ... Else ... EndIf
InsertChangedBufferList
InsertChars ("source" , "destination" , < offset >)
InsertDeviceList LOGICAL PHYSICAL ASSIGNS ALL

Command

InsertDirectoryIist { FILESONLY or DIRECIDRIESONLY 1
InsertDocument "Document Name" , < Start Iine > 1 , < IineCount > 1 1
InsertMessagePortIist
InsertStartingMessage
InserYToonlpeIist "Icon Name"

< Integer > = Integer (Expression)
< Integer > = IntegerFrom ("Object Name")
<< Logical >> = Interlace
< Integer > = IagestChunkOfMemory

LastCard
< Integer > = LengthOfIine

Let VariableName - Expression
< Integer > = Iimit (< limit1 >, < limit2 >, < test value >)
< Integer > = IinesInDocument

IistenTo "PortName"
LoadBrush "filename" (, "Name" (, loadflags))
LoadBrushAnim "filename" { ,"BrushAnim Name" { ,loadflags 1 1
LoadDocument "filename" { , "Document Name" I
LoadIcon "filename" { ,"Namen { ,< load flags > 1 1
Loadpicture "filename" (, "Name" (, loadflags))
LoadSound "filename" { ,"Sound Name")

Logical ,, = Logical (Expression)
Loop ... Until x Logical Expression rn
Loop ... EndLoop

" String " = LowerCase (" String ")
MakeDocument "Document Name"
MakeIcon "Icon NameU,PROJECT or TOOL,"ImageNameU { ,"AltImageName" 1

<Integer>= M a x (< v a l > , < v a l > , ...)
< Integer > = Mdnteger
< Integer > = MessageErrorCode

" String " = MessageReturned
<Integer>= Min (< v a l > , < v a l > , ...)
< Integer > = MinInteger
< Integer > = MouseX
< Integer > = Mousey

MoveBrushAnim "BrushAnim Namew,< Xvel>,< Yvel>, < Xacc >,< Yacc >, { < ticks >] j
MoveBrushAnimTo "BrushAnim Name", < x >,< y > { ,ticks 1
Movecursor U P DOWN LEIT or RIGHT { ,< Count > 1
MoveCursoflo Location Area

Location: STARTOF or ENDOF
Area: DOCUMENT, LINE, NEXTWORD, PREVIOUSWORD, or THISWORD

Page Command

Moveobject "Object Nameu,< x >,< y >

MovePen < x >,< y >
Movescreen < Delta-X >,< Delta-Y >

Movewindow < Delta-X >,< Delta-Y >
NewIine
NextCard

<< Logical >> = NO
<< Logical >> = NTSC
< Integer > = NumberOfChars (" String ")

" String " = ObjectName
<c Logical ,, = Objedstate ("Object Name")
cc Logical >> = OFF
a Logical * = ON

OpenFile "filename","Buffer Name", IOFlags, AccessFlags
IOFlags: READONLY or WRITEONLY.
AccessFlags: NEWFILE, OLDFILE or APPEND.

< Integer > = PenA
< Integer > = PenB
< Integer > = Pen0

PlaySound "Sound Name" { ,AudioFlags ,< period > 1
PlaySoundSequence "Document Name" { ,AudioFlags ,< period > 1
Pointer << Logical Expression *

< Integer > = PositionOfWord ("Source", < WordNumber >, { ,'WordDelimiters9' 1)
PositionOnLine < line >
Previouscard
PrintText < x >, < y >, " String "
Quit
Ramscram

< Integer > = Random (< Minimum >, < maximum >)
Rag0 < x >,< y >
RemoveBrushAnim "BrushAnim Name"

" String " = Removechars ("source" , < starting offset > , < length >)
Replace "fromtext","totext" { ,[GLOBAL or ONCE I BYWORD NOCASE 1
SaveAUChangedBuffers
SaveBrush "Brush Name" (, "filename")
SaveDocument "Document Name" { ,"filename" 1
SaveIcon "Icon Name" { ,"FileName"l
Savepicture "Picture Name" (, "filename")

< Integer > = Screencolors

Page Command

< Integer > = ScreenHeight
ScreenTitleBar tc Logical Expression B
ScreenTo FRONT or BACK

< Integer > - Screenwidth
< Integer > = ScreenX
< Integer > = ScreenY

SearchFor "text? { , BYWORD and NOCASE)
Sendblessage "MessageText" { , NORESULTS 1
SetAreaDrawMode NORMAL or OUTLINE
SetAutoLoadFlags [CHIP and ASNEEDED I or NONE
SetBrushAnimFlags "BrushAnim Namen,< brushanimfiags > { ,{ ticks 1 1

COMPRESSEDMODE or DECOMPRESSEDMODE
RESTOREBACKGROUND or LEAVEIMAGE
USEMASK or NOMASK
SEQUENCEDMOTION or LINEARMOTION
FORWARD, BACKWARD and PINGPONG
NONE

SetChannel< channel >
SetClipTransparentColor < color >

SetCurrentDirectory "directory path"
SetDefaultTool "Icon Name","DefaultTool"
SetDrawMode Normal JAM1 JAM2 COMPLEMENT INVERSEVIDEO
SetFileBulTerSize < sizeinkilos >

SetIconImage "Icon NameU,"ImageName" { ,"AltImageNamem)
SetInteger "Object Namev,< value >

SetObjectState "ObjectName", u Logical Expression B
SetPen < pena > { ,< penb > { ,< pen0 >))
SetPointer "Brush Name" { ,< x >,< y >)
SetPrintFont "fontname", < pointsize >
SetPrintStyle StandardFlags { ExtendedFlags { , < M e n 1 > { , < W e n 2 >)) 1

StandardFlags: P W N ITALIC BOLD and UNDERLINED.
ExtendedFlags: SHADOW OUTLINE GHOSTED or EMBOSSED.

SetRGB < col.reg >, < red >, < green >, < blue >

SetScreenntle Text"
SetText "Object Namem,Text"
SetToonlpeIist "Icon Namen,"DocumentName
Setvolume <volume> { ,< channel > 1
SetWindowIimits < Minx >,< MinY >,< M d >,< MaxY >
SetWindoatle Text"
SetWordDelimiters "delimiterlist"
ShowBrush "Brush Namen,< x >,< y > { , BRUSHPALETIE)

Command

ShowBrushAnim "BrushAnim Name", < x >,< y >
Showpalette W e specillcation"
ShowPicture "Picture Namen

< Integer > = Sign (< value s)
< Integer > = SizeOfDocument

SpeakTo "PortName"
SplitZine { < count > 1

<< Logical * = StartedFromWorkbench
stopscript

" String " = String (Expression)
N Logical * = Supervised
" String " = TextFrom ("Object Name")
" String " = Thecharacter

< Integer > = TheColumnNumber
" String " = TheCommandIine
" String " = TheCurrentDirectory
" String " = TheDate
" String " = TheIine

< Integer > = TheIineNumber
" String " = TheMessage
" Sting " = TheOriginDirectory
" String " = TheTime
" String " = Theword
" String " = TheWordDelimiters

Transparent < Logical Expression B
<< Logical >> = Transparentstatus
" String " = Trimstring (" String ")

<< Logical * = TRUE
'Qpe " String " { ,Newfine 1

" String " = UpperCase (" String ")
* Logical ,> = Veri@Expression (" String ")

While a Logical Expression B ... Until < Logical Expression n
While a Logical Expression >> ... EndLoop

< Integer > = WindowColors
< Integer > = WindowHeight

" String " = Windofl~tle
Windoflo FRONT or BACK

< Integer > = WindowWidth
< Integer > = WindowX
< Integer > = WindowY

WorkWithDocument "Document Name"
<< Logical >> = YES

L o a m
It is not necessary to use or understand the LoadFlags. However, they give you some options on how data
is loaded and kept in memory. The LoadFlags are KEYWORDS that can be added to the end of any load Command.
These Commands are: LoadPicture, LoadBrush, Loadsound, LoadBrushAnim, and LoadDocument.

The LoadFlags are: OVERWRITE CHIP (DEIAYLOAD or ASNEEDED).
You do not have to specify any of the loadflags or you can use one or more of them. If you use more than one,
do not separate them with commas.

OVERWRITE
OVERWRITE causes the file to be re-loaded even if it has already been loaded into memory. Normally, a load
Command will not re-load the file if it is currently in memory.

CHIP
CHIP causes the file to be loaded into the Amiga's CHIP memory. Loading a file into CHIP memory causes an image to be
displayed slightly faster. However, CHIP memory is a valuable resource. The CHIP loadflag is only relevant when used with the
LoadPicture and LoadBrush Commands.

DELAYLOAD or ASNEEDED
DELAYLOAD or ASNEEDED are used to alter when the file is loaded. By Default, a file is loaded if it is not already
in memory. You can specify either DELAYLOAD or ASNEEDED, but not both.

DEIAYLOAD
DELAYLOAD indicates not to load the file until a Show or Play Command is used. Also, using the DELAYLOAD fla
allows you to specify a "Namen other than the "filename" and still have it automatically loaded. When a Show Command
uses "Namen, it will load the "filename" specified in the Load Command.

ASNEEDED
ASNEEDED does the same thing as DELAYLOAD except it automatically flushes the loaded file from memory when it
is not being used. Normally, the file remains in memory until it is flushed with a Flush Command or a memory panic occurs.
A memory panic occurs when there is not enough memory to complete an operation. When this happens, CanDo automatically
flushes ALL data not being used. Even so, running out of memory is a dangerous condition. ASNEEDED is very useful when
there is not a lot of memory and a delay is acceptable each time the file is used.

Examples:

LoadPicture "Images:Background.pic", "Background" ,DELAYLOAD

LoadPicture "Images:Background.pic", "Background" ,CHIP

Loadpicture "Irnages:Background.pic", "Background" @NEEDED CHIP

Loadpicture "Images:Background.pic", "Background" ,OVERWRITE

CanDo has many features that you may customize to suit your tastes. These may be changed by editing the Tool Types in
CanDo's icon. Do this by selecting the CanDo icon and then selecting Info in the WorkBench menu. Edit each Tool Type and press
Return. An alternate method of setting CanDo's defaults is to create a text file named CanDo.defaults and save it to your S: directory.
This file should contain the same text as was contained in the Tool Types, one Tool Type per line. Here are the Tool Types and an
explanation of each. If the Tool Type is not defined, it will default to the value shown in brackets ([]).

EDITORTOOLS = "Path" ["Editoflools"]
The name of the directory where the EditorTool files reside.

XTRAS = "Path" ['XtraTools"]
The name of the directory where the Xtra Object files reside.

OBJECTS = "Path" ["ObjectTools"]
The name of the directory where the Object files reside.

HELPFILES = "Path" ["CanDoExtras:Helpfiles"l
The name of the directory where the Help files reside.

SOUNDS = "Path" ["CanDoExtras:Sounds"l
This is the default directory in which CanDo looks for your sounds.

IMAGES = "Path" ["CanDoExtras:Images"l
This is the default directory in which CanDo looks for your images.

BRUSHES = "Path" ["CanDoExtras:Brushes"l
The default directory in which CanDo looks for your brushes or clipped graphics.

BRUSHANIMS = "Path" ["CanDoExtras:BmshAnims"l
The default directory in which CanDo looks for your DeluxePaint 111 BrushAnirns.

DOCUMENTS = "Path" ["CanDoExtras:Documents"l
The default directory in which CanDo looks for your text documents.

DECKS = "Path" ["CanDoExtras:Decks"l
The default directory for saving and loading your decks.

DEFAULTDECK = "Pathfile"
You may set the Deck to be loaded when CanDo is started or when you select New from CanDo's Deck Menu.

Advanced Features

SOUNDEFFECIS - On or Off [On]
This turns all CanDo's sound effects On or Off.

SOUNDVOLUME = 0 to 64 1641
This is the volume setting for CanDo's sound effects. It can range from 0 (quiet) to 64 (loud).

SCROLLsPEED - 1 to 1 0 1.51
This controls how fast CanDo's screen scrolls up and down. It can be a value of 1 to 10
where 1 is the fastest.

INHERI'WINDOW - On or Off [On]
When CanDo makes a new card it inherits the current card's window (On) or it uses the
default window (OfD .

COORDINATEDRAG - On or Off [Offl
When making a box (button,field,etc ...) to define an object, this flag controls the method
of interaction:

On = Position, Click, Drag, Release
Off= Position, Click, Release, Move, Click, Release

CANDOFONT = "fontname" ["topaz"]
This defines the font to be used by CanDo. This font must have an eight point
non-proportional render.

AUTOREQUESTERS - On or Off [On]
This can be used to turn off (skip showing) intermediate requesters.

CRASHFILE - "PathFile" ["CanDoEjrtras:Decks/CanDo.CrashDeck"l
If CanDo crashes, it can store the current Deck to a file. This must be a valid path and filename.
If the name is a Null ("") then CanDo does not store the current Deck.

ICONS - On or Off [On]
This informs CanDo whether or not to create an icon for Decks that are saved.

ICONDEFAULTIDOL - "Default Tool" ["C:CanDoRunner"l
When CanDo creates an icon for a Deck, this is the default tool for the icon. Normally, this should be CanDo.runtime,
which is the small run time module that uses the CanDo.library in your LIBS: directory. To make a distributable
application be sure to use the CanDoBinder.

Remember to look on your CanDo and CanDoExtras disk for the ReadMe files. These files contain last minute
information that was not included in this manual.

There are many subtle, and not so subtle, methods of easily doing seemingly complex operations in CanDo's
scripting language. Please look through the example Decks that are included on your CanDoExtras disk.
These Decks have many different scripts that are good examples of scripting. The best way of learning the ins and outs
is to experiment and try new things.

Error Messages

Unknown Command
The first word on the line is not a valid Command. You probably misspelled the Command or you forgot to
type LET for an assignment.

Too many parameters
The Command line has too many parameters. It's also possible you provided a parameter for a Command
that does not use any.

Not enough parameters
The Command needs more parameters than you provided.

Unrecognized KEYWORD
You provided an unrecognized word where a KEYWORD was expected. It is possible you tried to use a
variable name in its place.

Confiicting switches specified
You indicated two or more KEYWORDS that cannot be used together.

Too many IFs
You have too many IF/ENDIF combinations in your script.

IF without matching ENDIF
You do not have an ENDIF for every IF Command in your script.

Unexpected ELSE or ENDIF
You don't have an IF before every ELSE or ENDIF Command.

LOOP/WHILE without matching ENDLOOP/UNTIL
Your script does not have an ENDLOOP or UNTILfor every LOOP or WHILE Command in your script.

Unexpected EXlTLOOP/ENDLOOP/UNTIL
You don't have a LOOP or WHILE before every EXITLOOP, ENDLOOP, or UNTIL Command.

Too many LOOPS
You have too many LOOP/WHILE ... ENDLOOP/UNTIL combinations in your script.

Misplaced operator
An expression contains a misplaced operator. An operator was found in a place where a variable or constant was expected.

Mismatched parenthesis
An expression does not have matching parenthesis.

Expression is too complicated
An expression has too many parenthesis and operations. Simplify the expression by removing a portion of it and
assigning it to a variable. You can then use the variable in place of this portion.

Invalid expression
CanDo could not figure out an expression.

Error Messages

Run Time Errors

Named routine not found
A Do Command attempted to run a routine that does not exist.

Card not found
A GotoCard Command attempted to go to a card that does not exist.

Named Object not found
An Object Command referenced an Object that does not exist.

Named Object is wrong type
The referenced Object can not be used in this context.

Addressed port not found
The ARexx port specified in an ListenTo Command does not exist.

Named buffer not found
The "Buffer Name" specified in a Buffer Command does not exist.

Named buffer is wrong type
The "Buffer Name" can not be used in this context.

Stack overtlow
You have too many nested Do Commands. This probably is because a Routine is calling itself indefinitely.

Command not allowed in current mode
This Command cannot be used from within CanDo but it can be used when your project is running by itself
The System Variable SUPERVISED is true when your project is running from CanDo.

No Document selected
You attempted to use a Document Command without first making a Document.

Name evaluated to a NULL string
A string evaluated to a NULL ("") when a valid name was required.

Division by ZERO
An expression contained a division by ZERO (0).

Invalid variable name
The Command contained an invalid variable name, or an attempt to set the value of a System Variable or Function.
The Command required a variable name.

Run Time Errors

Screen open error
Not enough chip memory was available in your Amiga to open a screen the size that is required by your card's window.

Window open error
Not enough chip memory was available in your Amiga to open your card's window.

Unknown IFF FORM type
The IFF file referenced is not of a type CanDo knows how to deal with. Alternately, it might be a corrupt IFF file.

Brush file has no mask stored with it
The brush file was saved in a format that does not have a mask, and one cannot be computed.
The mask is used for Image buttons and ShowBrush with Transparent enabled.

Premature EOF
A file referenced in your script, or used by one of your Objects, was not complete.

Not enough memory
Not enough memory was available in your Amiga to perform the current operation. CanDo will first try to release
any memory is not using at the moment before resorting to this error.

Error Messages

File Errors

Object in use
A file (or device) that your script referenced is in use by another program in your Amiga.
Your program must wait until that DOS object is free.

Directory not found
Your script tried to run a SetCurrentDirectory Command into a directory that could not be found.
Check your script for accuracy.

Object not found
A file (or device) could not be located using the name as it appeared in your script.
Check the filename for accuracy and correct it.

Wrong file type
A file that you tried to load (probably as an IFF file) is not of the correct type.

Disk not validated
Your script tried to write to a disk or volume that has not been validated by AmigaDOS.

Disk write-protected
Your script tried to write to a disk that has been write-protected.

Device not mounted
A file was referenced on a volume that could not be found.

Disk full
The disk that your script was writing to has become full. Often, this can be corrected without
interrupting your script by deleting unneeded files from the full disk.

File delete-protected
Your script attempted to save a buffer on top of a file already on the disk that has been protected from deletion.

File write-protected
Your script opened a WriteFile buffer using a file that is write-protected.

Not DOS disk
A disk in your system, referenced by your script, is not a standard AmigaDOS disk.
Disks of this sort cannot be used with CanDo.

.Do.DohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDotDo.Do.Do.DohDohDohDo.DohDotDo
hDo.DohDo.Do.Do.Do.Do.Do.Do.Do.DohDo.DoCDohDo.Do.Do.Do.Do.Do.Do.DokDohDotDo
tDo.Do.DotDohDo.Do.Do.Do.Do.Do.DohDotDotDohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do
.Do.Do.Do.DohDohDokDo.DokDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.DokDohDohDotDo.Do.Do
kDo.DohDo.Do.DotDoilDotDo~DohDohDo.Do.Do.DolDohDohDo~DohDohDohDotDo.DokDohDo
IDo.Do.Do.Do.Do.Do.DotDo.DohDohDohDokDotDotDo.Do.Do.Do.Do.Do.Do.Do.DohDo.Do
IDo.Do.DokDo.Do.Do.Do.Do.DohDohDohDotDo.Do.Do.Do.Do.Do.Do.Do.Do.DokDohDo.Do
CDohDo.DotDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDotDo.Do.Do.Do
hDo.DohDohDollDokDo.Do.Do.Do.Do.Do.Doi,Do.DokDohDohDohDohDohDohDotDo.Do.Doi(Do
.Do.Do.Do.Do.Do.Do.Do.DohDohDohDokDokDo.Do.DohDo.DohDo.Do.Do.Do.Do.DohDotDo
.Do.DoCDo.Do.Do.Do.Do.DohDohDohDotDo.Do.DotDo.Do.Do.Do.Do.Do.Do.Do.DohDotDo
IDo.DotDo.Do.Do.Do.Do.Do.Do.Do.DotDo.Do.Do.Do.Do.Do.Do.Do.DolDokDo.DohDo.Do
IDotDo.Do.Do.DokDo.Do.Do.Do.Do.Do.Do.Do.DohDohDohDohDohDotDotDotDo.Do.Do.Do
hDo.Do.Do.Do.Do.Do.Do.DohDohDohDotDotDo.DohDohDo.DohDo.Do.Do.Do.Do.Do.DotDo
hDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.DotDoCDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDotDo
hDo.DotDo.Do.Do.Do.Qo.Do.Do.Do.Do.DoCDo.Do.Do.Do.Do.Do.Do.Do.DolDokDohDotDo
.Do.Do.DohDokDo.Do.Do.Do.Do.Do.Do.Do.Do.DohDohDohDotDo.Do.Do.Do.Do.Do.Do.Do
IDotDo.DohDo.Do.DokDohDohDohDotDokDokDohDohDohDohDoirDohDo.Do.Do.Do.Do.DoMDo
IDo.DohDotDo
hDo.DoWDoCDoMDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.DoMDolDotDohDohDo.DohDo.DohDohDo
hDo.Do.DohDokDokDo.DokDo.Do.Do.Do.Do.Do.Do.DokDokDotDo.Do.Do.Do.Do.Do.Do.Do
hDo.Do.Do.Do.Do.Do.Do.DohDotDo.Do.DohDohDohDohDotDotDotDo.Do.Do.Do.Do.Do.Do
.DohDo.DohDotDo
IDo.DotDohDo.Do.Do.Do.Do.Do.Do.Do.Do.DokDoMDo.Do.DoHDo.DokDokDotDo.DohDo.Do
.Do.Do.DotDo.Do.Do.Do.DohDotDo.Do.DotDohDohDohDotDotDo.DotDotDo.Do.Do.Do.Do
.Do.Do.DotDo.Do.Do.Do.DohDotDo.Do.DotDohDohDohDotDotDo.Do.Do.Do.Do.Do.Do.Do
hDo.Do
.DotDo.DohDokDo.Do.Do.Do.DokDokDokDohDohDoMDo.Do.Do.DokDo.Do.Do.DohDotDohDo
IDo.Do~DotDo.DohDo.DohDohDotDotDo.DotDohDohDohDotDotDo~DotDotDoCDohDohDohDo
kDo.Do
IDo.Do
hDoilDohDohDo.DobDoMDokDohDotDotDo.DokDo.Do.DohDo.DoMDotDotDokDokDokDokDohDo
IDo.Do.DoWDohDo~Do.Do~DohDotDotDohDotDohDohDohDotDotDotDotDotDohDotDotDohDo
.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.De.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do
hDotDo.DohDokDo.Do.Do.DohDokDo.DokDo.Do.Do.Do.Do.Do.DokDokDo.Do.Do.Do.Do.Do
hDotDo.DotDohDohDokDohDohDotDo.DohDohDoilDo.DohDohDoi(DobDotDokDoi)DohDo.DohDo
hDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDohDohDotDotDotDotDo.DohDohDo.Do.Do
IDo.Do
IDotDo.Do.DohDohDokDohDohDotDotDohDo.Do.Do.Do.DohDohDoCDo.Do.Do.Do.Do.DokDo
hDotDo.Do.Do.Do.Do~DotDo.DohDotDotDoCDohDohDohDotDohDotDotDokDohDohDotDo.Do
hDohDohDo.Do.Do.Do.DoUDo.Do.DohDohDo.DohDohDohDotDohDotDotDohDohDohDotDo~Do
hDohDohDohDoWDo.DoilDo.Do.DoMDo.Do.Do.Do.Do.DohDo.DohDohDo.Do.DohDohDohDo.Do
.DohDo.DotDotDotDo.DotDohDotDotDokDohDo.Do.Do.Do.Do.DokDo.Do.Do.Do.Do.Do.Do
LDotDohDo.Do.Do.Do.Do.Do.DohDotDotDotDohDohDohDohDohDotDotDohDokDohDotDotDo
hDo.Do.DokDokDohDohDo.Do.Do.Do.Do.Do.Do.DohDohDotDohDo.Do.Do.Do.DohDotDotDo
hDohDokDohDohDohDoilDohDohDo.DohDohDo.DohDohDohDohDo.DoMDo.Do.DohDo.Do.DohDo
.DohDo.Do.Do.Do.Do.Do.DohDotDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DoMDo.Do
IDohDohDo.DoMDo.DohDohDo.DohDo.Do.DohDohDohDohDotDoilDo.DokDohDohDohDohDo.Do
hDo.Do.Do.DohDohDohDohDohDo.Do.Do.Do.Do.DohDohDotDo.DotDo.Do.DotDo.Do.DotDo
hDo.DotDotDo.Do.Do.Do.DohDotDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do
hDo.DotDo.Do.Do.Do.Do.Do.DotDotDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do
hDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.DokDo.DohDohDotDotDotDo.Do.DohDo.Do.Do.Do.Do
hDo.Do.DohDohDoMDo.Do.Do.Do~DohDohDohDohDohDohDo.Do.Do.DohDo.Do.Do.DohDo.Do
.Do.Do.DohDohDohDo.Do.Do.Do.DohDohDohDohDotDo.Do.Do.Do.Do.Do.Do.Do.DohDo.Do
IDohDohDohDohDohDohDohDo.Do.DohDo&DotDotDo.Do.Do.Do.Do.Do.Do.Do.DokDotDotDo
.DotDo.Do.Do.Do.Do.DohDo.Do.Do.DotDotDo.Do.Do.Do.DokDokDohDokDokDo.Do.DotDo
kDohDohDohDohDohDo.DohDo~DohDo.DohDohDo.DokDotDohDo.DohDohDohDohDo.Do.DohDo
hDo.DokDohDohDotDo.Do.Do.DohDo.Do.Do.DokDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do
hDo.DohDo.DotDotDokDo.Do.DohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do
hDo.Do.Do.Do.Do.DotDotDo.Do.DotDokDotDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDo.Do
.DokDo.Do.Do.Do.Do.Do.Do.Do.Do.DotDo.Do.Do.DohDohDohDohDokDokDokDohDotDo.Do
IDohDo.DokDotDo.Do.Do.Do.DohDo.Do.Do.Do.Do.Do.Do.DohDotDotDotDo.Do.Do.Do.Do
IDohDo.DotDo.Do.Do.Do.Do.DohDo.Do.DolDohDohDo.Do.Do.Do.DotDotDo.Do.Do.Do.Do
IDo.Do.DotDotDotDotDo.DohDo.DotDoilDoCDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDo.Do
kDo.DohDotDo.Do.Do.DotDo.DohDo.Do.Do.Do.DohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do
hDo.DohDo.DohDohDo.Do.Do.DohDotDokDohDohDohDotDotDokDo.Do.DohDohDohDotDohDo
hDo.DohDo.DohDohDohDo.Do.DohDotDohDotDohDohDotDotDohDotDo.DohDohDohDotDohDo
hDo.DohDo.Do.Do.Do.Do.Do.Do.Do.Do.DotDo.Do.botDo.Do.DoCDo.Do.Do.DohDotDohDo
.Do.DoCDo.Do.Do.Do.Do.DohDohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do
.Do.DotDo.DohDokDotDotDo.DotDo.DohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do
LDo.Do.Do.DohDotDotDotDo.DotDo.DotDohDohDohDo.Do.Do.DohDohDohDohDo.Do.Do.Do
hDo.Do.DohDohDo.Do.Do.Do.Do.Do.Do.Do.Do.DotDo.Do.Do.Do.DohDohDotDo.Do.Do.Do
hDo.Do.DohDohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DotDo.DokDo.Do.Do.Do
hDo.DokDohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DotDotDotDokDohDotDo
BDohDotDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DotDotDo.DohDo.Do
.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDo.Do.Do.Do.Do.Do.Do.Do.DotDo.DohDotDohDo
hDg.Do.Do.Do.Do.Do.Do.Do.Do.Do.DohDohDokDokDohDo.Do.Do.Do.DotDo.DohDo.Do.Do
hDo.DohDo.Do~Do.Do.Do.Do.Do.Do.Do.DohDo.Do.Do.Do.Do.Do~DohDokDokDohDo.DohDo
LDohDotDo.DohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DokDohDohDohDotDo
IDohDohDo.Do~DohDohDo.Do.Do.Do.Do.DohDo.Do.Do.Do.DoilDohDohDokDohDokDohDotDo
hDo.Do.Do.Do.Do.DohDo.Do.Do.Do.Do.Do.Do.Do.Do.Do.Do.DotDohDokDo.DokDohDotDo
hDokDotDo.Do.Do.DohDo.Do.Do.Do.Do.Do.Do.Do.Do.DotDo.Do.DohDohDokDohDotDo.Do
tDohDo.Do.Do.DokDo.Do.Do.Do.Do.Do.Do.Do.Do.DohDokDo.Do.Do.Do.Do.Do.DotDo.Do
t. A-lr A-L A-L A-L A-.r &r I L ~ ~r I L ~ I L ~ ~r ~r rr-r rr-r rr-r rr-I. rr-r rr-r rr-r hr rr-r rr-r I L ~ IL

ConDo is o product of INOVAlrohonics, 1 ~ .
8499 Greenville Avenue
Suite 2098
Doll~s, Texas 75231
21 4-43D-4991

